Computer Security Division Information Technology Laboratory

AES

The Third
Advanced Encryption Standard
Candidate Conference

APRIL 13-14, 2000

HILTON NEW YORK AND TOWERS
New York, NY, USA

http.//www.nist.gov/aes

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Preface

The Third Advanced Encryption Standard Candidate Conference (AES3) is the last in a
series of three conferences that NIST has organized in its quest to develop the AES. It
has been along road, since NIST first announced its intention in January 1997 to develop
a replacement standard for DES. Now, AES3 presents a wonderful opportunity for the
cryptographic community to gather and discuss Round 2 analysis and other issues that are
critical to the AES development effort. After Round 2 ends on May 15, 2000, NIST will
begin the process of selecting the algorithm(s) that will be included in a draft AES
Federal Information Processing Standard (FIPS). Therefore, NIST is holding AES3 to
better understand which of the finalist algorithms - MARS, RC6™, Rijndael, Serpent,
and Twofish - should be selected for the FIPS.

The papers to be presented at AES3 cover awide range of issues, including cryptanaysis,
implementability in Field Programmable Gate Arrays (FPGAS), hardware simulations,
performance on various platforms, the role of future resiliency, and the possibility of
including single or multiple algorithmsin the AES FIPS.

Please see the AES home page at http://www.nist.gov/aes for the remaining papers that
were proposed for AES3. Those papers - like the ones presented at AES3 - are
considered official Round 2 public comments.

All Round 2 official public comments are due by May 15, 2000, and they should be
submitted to AESRound2@nist.gov. This also includes any comments that interested
parties may have on the papers presented at both AES3 and FSE 2000 (e.g.,
comments on their validity, and their applicability to and impact on the AES
selection). NIST iseager to hear responsesto theseresults and research.

The Program Committee members deserve a lot of credit for their hard work in
evaluating papers, preparing for the conference, and chairing the panel presentations.
Miles Smid (CygnaCom Solutions), Morris Dworkin (NIST), Tom Berson (Anagram
Laboratories), Dennis Branstad (consultant, TIS Labs), Craig Clapp (PictureTel), Susan
Langford (Certicom Corp.), Stefan Lucks (Universitdt Mannheim), Tim Moses (Entrust
Technologies), and David Solo (Citigroup).

http://www.nist.gov/aes/

Specia thanks go to the NIST staff who have provided invaluable assistance in
evaluating documents and planning for AES3: Elaine Barker, Larry Bassham, Bill Burr,
Jm Dray, Morris Dworkin, Jim Nechvatal, Ed Roback, and Juan Soto. Much gratitude is
extended to the NIST staff responsible for the logistical side of AES3: Kathy Kilmer,
Lori Phillips, and Vickie Harris.

A specia mention of thanks must be made for the cooperation and assistance provided by
Bruce Schneier, chair of the FSE 2000 Program Committee, and Beth Friedman of
Counterpane Labs, for their efforts to coordinate these two conferences.

Finally - and most importantly - NIST greatly appreciates the efforts of all the authors
who submitted papers for AES3. We have said this before, and we will say it again: the
ultimate success of the AES Development Effort depends heavily on the public
evaluation and analysis performed by the cryptographic community. Thank you for your
hard work.

Personally, |1 would like to thank Miles Smid for his tireless leadership role in the AES
development effort over the years, laying the solid foundation needed to support any
future success that may be enjoyed by the AES.

We hope that you benefit a great deal from having joined usin New Y ork City.

Jim Foti
NIST

April 2000

Third Advanced Encryption Standard Candidate Conference:

AES3
Table of Contents

Abstracts of AES-related Papers from the Fast Software Encryption

WOrkshop (FSE) 2000..........ceiiiiiieiiiesiiee et

Day 1 - Thursday, April 13, 2000

Session 1: "FPGA Evaluations"

An FPGA Implementation and Performance Evaluation of the
AES Block Cipher Candidate Algorithm FinalistS.........coooceeiiieiienenieenne 13
A.J. Elbirt, W. Yip, B. Chetwynd, C. Paar

A Comparison of the AES Candidates Amenability to FPGA
IMPIEMENEALTON ... 28
Nicholas Weaver, John Wawr zynek

Comparison of the hardware performance of the AES candidates
using reconfigurable hardware.............cccoveeeeiiiiiee e 40
Kris Gaj, Pawel Chodowiec

Session 2: "Platform-Specific Evaluations™

AES Finalists on PA-RISC and |A-64:
Implementations & Performance...........ccccvvee i inee e 57
John Worley, Bill Worley, Tom Christian, Christopher Worley

A comparison of AES candidates on the Alpha 21264cccccceevceeennnnns 75
Richard Weiss, Nathan Binkert

Performance Evaluation of AES Finalists on the High-End
1= 07 o F 82
Fumihiko Sano, Masanobu Koike, Shinichi Kawamura,
Masue Shiba

How Well Are High-End DSPs Suited for the AES Algorithms?
AES Algorithms on the TMS320C6X DSP.......cccvvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeen 94
Thomas J. Wollinger, Min Wang, Jorge Guajardo, Christof Paar

Fast Implementations of AES Candidates............cooveeeiiieriiiienniieesieeeeee 106
Kazumaro Aoki, Helger Lipmaa

Session 3: "Surveys"

A Performance Comparison of the Five AES Finalists..........c.cc........

Bruce Schneler, Doug Whiting

Efficiency Testing of ANSI C Implementations of Round 2

Candidate Algorithms for the Advanced Encryption Standard...........

Lawrence E. Bassham |11

NIST Performance Analysis of the Final Round Java™

AES CaNOIAEEES . ..o e e

Jim Dray

Performance of the AES Candidate Algorithmsin Java.....................

Andreas Sterbenz, Peter Lipp

Session 4: "Cryptographic Analysis and Properties” (I)
MARS Attacks! Preliminary Cryptanalysis of Reduced-Round

MARS ValTANtS. ... ceeeeeeeeeeee et e e e e e e e e e e e enns

John Kelsey, Bruce Schneler

Impossible Differential on 8-Round MARS Core.........ccccoeeeeiieennne.

Eli Biham, Vladimir Furman

Preliminary Cryptanalysis of Reduced-Round Serpent.......................

Tadayoshi Kohno, John Kelsey, Bruce Schneier

*kkkk*k

Day 2 - Friday, April 14, 2000

Session 5: "Cryptographic Analysis and Properties” (1)
Attacking Seven Rounds of Rijndael under 192-bit and

256-DIt KEYS.... e 215
Sefan Lucks
A collision attack on 7 rounds of Rijndagl ... 230

Henri Gilbert, Marine Minier

Relationships among Differential, Truncated Differential,
Impossible Differential Cryptanalyses against Word-Oriented
Block Cipherslike RIINDAEL, E2.......cociiiieie e 242
Makoto Sugita, Kazukuni Kobara, Kazuhiro Uehara,
Shuji Kubota, Hideki Imai

Session 6: "AES Issues" Panel

AES and Future Resiliency: More Thoughts And Questions...................... 257
Don Johnson

The Effects of Multiple Algorithmsin the Advanced
ENCryption Standard............oooeee i 269
lan Harvey

Session 7: "ASIC Evaluations / Individual Algorithm Testing"

Hardware Evaluation of the AES FINalists........ccccooieiiiiiieiiiieecee e, 279
Tetsuya Ichikawa, Tomomi Kasuya, Mitsuru Matsui

Hardware Performance Simulations of Round 2
Advanced Encryption Standard AlQorithms...........ccoooeeiiiiniieinieecieens 286
Bryan Weeks, Mark Bean, Tom Rozylowicz, Chris Ficke

High-Speed MARS HardWare............cocveiiiiiieiieeeeieese e 305
Akashi Satoh, Nobuyuki Ooba, Kohji Takano, Edward D'Avignon

SPEEAING UP SEIPENL ...ceiiiieeiieie ettt e e 317
Dag Arne Osvik

Abstracts of AES-related Papers
from the
Fast Software Encryption Workshop (FSE) 2000

Bruce Schneier
Chair, FSE 2000 Program Committee

The|Seventh Fast Software Encryption Workshop (FSE 2000) was held during the three days
immediately before this AES conference. Seven papers related to the AES finaists were
presented at FSE 2000, and the titles and abstracts for those papers are listed below.

The proceedings for FSE 2000 will be published by Springer-Verlag in their Lecture Notes in
Computer Science series. Copies of the pre-proceedings are available from the FSE secretariat.

k

Title: Improved Cryptanalysis of Rijndael

Authors: Niels Ferguson, John Kelsey, Bruce Schneler, Mike Stay, David Wagner, and Doug
Whiting

Abstract: We improve the best attack on 6-round Rijndagl from complexity 27 to 2*2. We aso
present the first known attacks on 7- and 8-round Rijndagl. Finally, we discuss the key schedule
of Rijndagl and describe a related-key technique that can break 9-round Rijndael with 256-bit

keys.

Title: On the Pseudorandomness of AES Finalists -- RC6, Serpent, MARS and Twofish

Authors: Tetsu Iwata and Kaoru Kurosawa

Abstract: The aim of this paper is to compare the security of AES finalists in an idealized model
like Luby and Rackoff. We mainly prove that a five round idealized RC6 and a three round
idealized Serpent are super-pseudorandom permutations. We then show a comparison about this
kind of pseudorandomness for four AES finalists, RC6, Serpent, MARS and Twofish.

Title: Correlationsin RC6

Authors: Lars Knudsen and Willi Meler

Abstract: In this paper the block cipher RC6 is analysed. RC6 is submitted as a candidate for the
Advanced Encryption Standard, and is one of five finalists. It has 128-bit blocks and supports
keys of 128, 192 and 256 bits, and is an iterated 20-round block cipher. Here it is shown that
versions of RC6 with 128-bit blocks can be distinguished from a random permutation with up to
15 rounds; for some weak keys up to 17 rounds. Moreover, with an increased effort key-recovery
attacks can be mounted on RC6 with up to 15 rounds faster than an exhaustive search for the

key.

http://www.counterpane.com/fse.html

Title: Securing the AES Finalists Against Power Analysis Attacks

Author: Thomas Messerges

Abstract: Techniques to protect software implementations of the AES candidate algorithms
from power analysis attacks are investigated. New countermeasures that employ random masks
are developed and the performance characteristics of these countermeasures are analyzed.
Implementations in a 32-bit, ARM-based smartcard are considered.

Title: Efficient Methods for Generating MARSlike S-boxes

Authors: L. Burnett, G. Carter, E. Dawson, and W. Millan

Abstract: One of the five AES finalists, MARS, makes use of a 9x32 s-box with very specific
combinatorial, differential and linear correlation properties. The s-box used in the cipher was
selected as the best from a large sample of pseudo randomly generated tables, in a process that
took IBM about a week to compute. This paper provides a faster and more effective alternative
generation method using heuristic techniques to produce 9x32 s-boxes with cryptographic
properties that are clearly superior to those of the MARS s-box, and typically take less than two
hours to produce on a single PC.

Title: A Satistical Attack on RC6

Authors: Henri Gilbert, Helena Handschuh, Antoine Joux, and Serge Vaudenay

Abstract: This paper details the attack on RC6 which was announced in a report published in the
proceedings of the second AES candidate conference (March 1999). Based on an observation on
the RC6 dtatistics, we show how to distinguish RC6 from a random permutation and to recover
the secret extended key for afair number of rounds.

Title: Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent

Authors: John Kelsey, Tadayoshi Kohno, and Bruce Schneier

Abstract: We introduce a new kind of attack based on Wagner's boomerang and inside-out
attacks. We first describe the new attack in terms of the origina boomerang attack, and then
demonstrate its use on reduced-round variants of the MARS core and of Serpent. Our attack
breaks eleven rounds of the Mars core with 2% chosen plaintexts, 2% memory, and 2%*° partid
decryptions. Our attack breaks eight rounds of Serpent with 2'** chosen plaintexts, 2'° memory,
and 2" partial decryptions.

Session 1:

"FPGA Evaluations"”

An FPGA Implementation and Performance Evaluation of the AES
Block Cipher Candidate Algorithm Finalists *

AJ Elbirt!, W Yip!, B Chetwynd?, C Paar!
Electrical and Computer Engineering Department

Worcester Polytechnic Institute
100 Institute Road, Worcester, MA 01609, USA

! Email: {aelbirt, waihyip, christof} @ece.wpi.edu

? Email: spunge@alum.wpi.edu

Abstract

The technical analysis used in determining which of the Advanced Encryption Standard candidates
will be selected as the Advanced Encryption Algorithm includes efficiency testing of both hardware and
software implementations of candidate algorithms. Reprogrammable devices such as Field Programmable
Gate Arrays (FPGAs) are highly attractive options for hardware implementations of encryption algo-
rithms as they provide cryptographic algorithm agility, physical security, and potentially much higher
performance than software solutions. This contribution investigates the significance of FPGA implemen-
tations of four of the Advanced Encryption Standard candidate algorithm finalists. Multiple architectural
implementation options are explored for each algorithm. A strong focus is placed on high throughput
implementations, which are required to support security for current and future high bandwidth appli-
cations. The implementations of each algorithm will be compared in an effort to determine the most
suitable candidate for hardware implementation within commercially available FPGAs.

Keywords: cryptography, algorithm-agility, FPGA, block cipher, VHDL

1 Introduction

The National Institute of Standards and Technology (NIST) has initiated a process to develop a Federal Infor-
mation Processing Standard (FIPS) for the Advanced Encryption Standard (AES), specifying an Advanced
Encryption Algorithm to replace the Data Encryption Standard (DES) which expired in 1998 [1]. NIST has
solicited candidate algorithms for inclusion in AES, resulting in fifteen official candidate algorithms of which
five have been selected as finalists. Unlike DES, which was designed specifically for hardware implementa-
tions, one of the design criteria for AES candidate algorithms is that they can be efficiently implemented in
both hardware and software. Thus, NIST has announced that both hardware and software performance mea-
surements will be included in their efficiency testing. So far, however, virtually all performance comparisons
have been restricted to software implementations on various platforms [2].

The advantages of a software implementation include ease of use, ease of upgrade, portability, and
flexibility. However, a software implementation offers only limited physical security, especially with respect
to key storage [3] [4]. Conversely, cryptographic algorithms (and their associated keys) that are implemented
in hardware are, by nature, more physically secure as they cannot easily be read or modified by an outside

*This research was supported in part through NSF CAREER award #CCR-9733246.

attacker [4]. The downside of traditional (ASIC) hardware implementation are the lack of flexibility with
respect to algorithm and parameter switch. A promising alternative for implementation block cipher are
reconfigurable hardware devices such as Field Programmable Gate Arrays (FPGAs). FPGAs are hardware
devices whose function is not fixed and which can be programmed in-system. The potential advantages of
encryption algorithms implemented in FPGAs include:

Algorithm Agility This term refers to the switching of cryptographic algorithms during operation. The
majority of modern security protocols, such as SSL or IPsec, allow for multiple encryption algo-
rithms. The encryption algorithm is negotiated on a per-session basis; e.g., IPsec allows among others
DES, 3DES, Blowfish, CAST, IDEA, RC4 and RC6 as algorithms, and future extensions are possible.
Whereas algorithm agility is costly with traditional hardware, FPGAs can be reprogrammed on-the-fly.

Algorithm Upload It is perceivable that fielded devices are upgraded with a new encryption algorithm
which did not exist (or was not standardized!) at design time. In particular, it is very attractive
for numerous security products to be upgraded for use of AES once the selection process is over.
Assuming there is some kind of (temporary) connection to a network such as the Internet, FPGA-
equipped encryption devices can upload the new configuration code.

Algorithm Modification There are applications which require modification of a standardized algorithm,
e.g., by using proprietary S-boxes or permutations. Such modifications are easily made with reconfig-
urable hardware. Similarly, a standardized algorithm can be swapped with a proprietary one. Also,
modes of operation can be easily changed.

Architecture Efficiency In certain cases, a hardware architecture can be much more more efficient if it is
designed for a specific set of parameters; e.g., constant multiplication (of integers or in Galois fields)
is far more efficient than general multiplication. With FPGAs it is possible to design and optimize an
architecture for a specific parameter set.

Throughput Although typically slower than an ASIC implementations, FPGA implementations have the
potential of running substantially faster then software implementations.

Cost Efficiency The time and costs for developing an FPGA implementation of a given algorithm are
much lower than for an ASIC implementation. (However, for high-volume applications, ASIC solutions
usually become the more cost-efficient choice.)

Note that algorithm agility remains an open research issue in regards to speed, physical security, and
the cost associated with current high-end FPGA devices. However, we believe that cost is not a long-
term limiting factor, as will be discussed in Section 3.3. For these reasons, this paper describes a thorough
comparison the AES finalist algorithms RC6, Rijndael, Serpent, and Twofish with respect to implementation
on state-of-the-art FPGAs. One aspect that seems to be especially relevant is the investigation of achievable
encryption rates for FPGA-based implementations. We demonstrate that FPGA solutions encrypt at rates
in the Gigabit range for all four algorithms investigated, which is at least one order of magnitude faster than
most reported software implementations [5].

What follows is an investigation of the AES finalists to determine the nature of their underlying com-
ponents. The characterization of the algorithms’ components will lead to a discussion of the hardware
architectures best suited for implementation of the AES finalists. A performance metric to measure the
hardware cost for the throughput achieved by each algorithm’s implementations will be developed and a
target FPGA will be chosen so as to yield implementations that are optimized for high-throughput opera-
tion within the commercially available device. Finally, multiple architecture options of the algorithms within
the targeted FPGA will be discussed and the overall performance of the implementations will be evaluated
versus typical software implementations.

2 Previous Work

As opposed to custom hardware or software implementations, little work exists in the area of block cipher
implementations within existing FPGAs. DES, the most common block cipher implementation targeted to
FPGAs, has been shown to operate at speeds of up to 400 Mbit/s [6]. We believe that this performance can
be greatly enhanced using today’s technology. These speeds are significantly faster than the best software
implementations of DES [7] [8] [9], which typically have throughputs below 100 Mbit/s, although a 137
Mbit/s implementation has been reported as well [7]. This performance differential is an expected result of
DES having been designed in the 1970s with hardware implementations in mind.

Other block ciphers have been implemented in FPGAs with varying degrees of success. A typical exam-
ple is the IDEA block cipher which has been implemented at speeds ranging from 2.8 Mbit/s [10] to 528
Mbit/s [11]. Note that while the 528 Mbit/s throughput was achieved in a fully pipelined architecture, the
implementation required four Xilinx XC4000 FPGAs.

Some FPGA implementation throughputs for the AES candidates have been shown to be far slower
than their software counterparts. Hardware throughputs of about 12 Mbit/s [12] [13] have been achieved for
CAST-256. However, software implementations have resulted in throughputs of 37.8 Mbit /s for CAST-256 on
a 200 MHz PentiumPro PC [5], a factor of three faster than FPGA implementations. When scaled to a more
current 600 MHz PentiumPro PC, it is expected that the same software implementation would outperform
FPGA implementations by an even larger factor. While an FPGA implementation of RC6 achieved data
rates of 37.8 Mbit/s [13], our findings indicate that considerably higher data rates are achievable.

When examining the AES finalists, it is important to note that they do not necessarily exhibit similar
behavior to DES when comparing hardware and software implementations. One reason for this is that the
AES finalists have been designed with efficient software implementations in mind. Additionally, software
implementations may be executed on processors operating at frequencies as high as 800 MHz while typical
implementations that target FPGAs reach a maximum clock frequency of 50 MHz.

3 Methodology

3.1 Design Methodology

There are two basic hardware design methodologies currently available: language based (high level) design
and schematic based (low level) design. Language based design relies upon synthesis tools to implement
the desired hardware. While synthesis tools continue to improve, they rarely achieve the most optimized
implementation in terms of both area and speed when compared to a schematic implementation. As a
result, synthesized designs tend to be (slightly) larger and slower than their schematic based counterparts.
Additionally, implementation results can greatly vary depending on the synthesis tool as well as the design
being synthesized, leading to potentially increased variances in the synthesized results when comparing
synthesis tool outputs. This situation is not entirely different from a software implementation of an algorithm
in a high-level language such as C, which is also dependent on coding style and compiler quality. As shown in
[14], schematic based design methodologies are no longer feasible for supporting the increase in architectural
complexity evidenced by modern FPGAs. As a result, a language based design methodology was chosen as
the implementation form for the AES finalists with VHDL being the specific language chosen.

3.2 Implementations — General Considerations

Each AES finalist was implemented in VHDL using a bottom-up design and test methodology. The same
hardware interface was used for each of the implementations. In an effort to achieve the maximum efficiency
possible, note that key scheduling and decryption were not implemented for each of the AES finalists. Because
FPGAs may be reconfigured in-system, the FPGA may be configured for key scheduling and then later

reconfigured for either encryption or decryption. This option is a major advantage of FPGAs implementations
over classical ASIC implementations. Round keys for encryption are loaded from the external key bus and
are stored in internal registers and all keys must be loaded before encryption may begin. Key loading is
disabled until encryption is completed. Each implementation was simulated for functional correctness using
the test vectors provided in the AES submission package [15] [16] [17] [18]. After verifying the functionality of
the implementations, the VHDL code was synthesized, placed and routed, and re-simulated with annotated
timing using the same test vectors, verifying that the implementations were successful.

3.3 Selection of a Target FPGA

When examining the AES finalists for hardware implementation within an FPGA, a number of key aspects
emerge. First, it is obvious that the implementation will require a large amount of I/O pins to fully support
the 128-bit data stream at high speeds where bus multiplexing is not an option. It is desirable to decouple
the 128-bit input and output data streams to allow for a fully pipelined architecture. Since the round keys
cannot change during the encryption process, they may be loaded via a separate key input bus prior to the
start of encryption. Additionally, to implement a fully pipelined architecture requires 128-bit wide pipeline
stages, resulting in the need for a register-rich architecture to achieve a fast, synchronous implementation.
Moreover, it is desirable to have as many register bits as possible per each of the FPGA’s configurable units to
allow for a regular layout of design elements as well as to minimize the routing required between configurable
units. Finally, it is critical that fast carry-chaining be provided between the FPGA’s configurable units to
maximize the performance of AES finalists that utilize arithmetic operations [13] [12].

In addition to architectural requirements, scalability and cost must be considered. We believe that the
chosen FPGA should be the best chip available, capable of providing the largest amount of hardware resources
as well as being highly flexible so as to yield optimal performance. Unfortunately, the cost associated with
current high-end FPGAs is relatively high (several hundred US dollars per device). However, it is important
to note that the FPGA market has historically evolved at an extremely rapid pace, with larger and faster
devices being released to industry at a constant rate. This evolution has resulted in FPGA cost-curves that
decrease sharply over relatively short periods of time. Hence, selecting a high-end device provides the closest
model for the typical FPGA that will be available over the expected lifespan of AES.

Based on the aforementioned considerations, the Xilinx Virtex XCV1000BG560-4 FPGA was chosen as
the target device. The XCV1000 has 128K bits of embedded RAM divided among thirty-two RAM blocks
that are separate from the main body of the FPGA. The 560-pin ball grid array package provides 512 usable
I/O pins. The XCV1000 is comprised of a 64 x 96 array of look-up-table based Configurable Logic Blocks
(CLBs), each of which acts as a 4-bit element comprised of two 2-bit slices for a total of 12288 CLB slices
[19]. This type of configuration results in a highly flexible architecture that will accommodate the round
functions’ use of wide operand functions. Note that the XCV1000 also appears to be a good representative
for a modern FPGA and that devices from other vendors are not fundamentally different. It is thus hoped
that our results carry over, within limits, to other devices.

3.4 Design Tools

FPGA Express by Synopsys, Inc. and Synplify by Synplicity, Inc. were used to synthesize the VHDL imple-
mentations of the AES finalists. As this study places a strong focus on high throughput implementations,
the synthesis tools were set to optimize for speed. As will be discussed in Section 6, the resultant implemen-
tations exhibit the best possible throughputs with the associated cost being an increase in the area required
in the FPGA for each of the implementations. Similarly, if the synthesis tools were set to optimize for area,
the resultant implementations would exhibit reduced area requirements at the cost of decreased throughput.

XACTstep 2.1i by Xilinx, Inc. was used to place and route the synthesized implementations. For the
sub-pipelined architectures, a 40 MHz timing constraint was used in both the synthesis and place-and-
route processes as it resulted in significantly higher system clock frequencies. However, the 40 MHz timing

constraint was found to have little affect on the other architecture types, resulting in nearly identical system
clock frequencies to those achieved without the timing constraint.

Finally, Speedwave by Viewlogic Systems, Inc. and Active-HDLTM by ALDEC, Inc. were used to perform
behavioral and timing simulations for the implementations of the AES finalists. The simulations verified
both the functionality and the ability to operate at the designated clock frequencies for the implementations.

4 Architecture Options and the AES Finalists

Before attempting to implement the AES finalists in hardware, it is important to understand the nature of
each algorithm as well as the hardware architectures most suited for their implementation. What follows
is an investigation into the key components of the AES finalists. Based on this breakdown, a discussion is
presented on the hardware architectures most suited for implementation of the AES finalists.

4.1 Core Operations of the AES Finalist Algorithms

Algorithm | XOR | Mod 2*? | Mod 2% | Fixed | Variable | Mod 2** | GF(2f) | LUT
Add Subtract | Shift Rotate | Multiply | Multiply
MARS . . . ° ° . .
RC6
Rijndael . . .
Serpent ° .
Twofish

Table 1: AES finalists core operations [20]

Modern FPGAs have a structure comprised of a two-dimensional array of configurable function units
interconnected via horizontal and vertical routing channels. Configurable function units are typically com-
prised of look-up-tables and flip-flops. Look-up-tables may be configured as either combinational logic or
memory elements. Additionally, many modern FPGAs provide variable-size SRAM blocks that may be used
as either memory elements or look-up-tables [21].

In terms of complexity, the operations detailed in Table 1 that require the most hardware resources as well
as computation time are the modulo 23? multiplication and the variable rotation operations [20]. Implement-
ing wide multipliers in hardware is an inherently difficult task that requires significant hardware resources.
Additionally, algorithms that employ large variable rotations require a moderate amount of multiplexing
hardware if carefully designed (see Section 5.1 for further discussion). S-Boxes may be implemented in either
combinatorial logic or embedded RAM — the advantages of each of these options are discussed in Section 4.2.
Fast operations such as bit-wise XOR, modulo 232 addition and subtraction, and fixed value shifting are con-
structed from simple hardware elements. Additionally, the Galois field multiplications required in Rijndael
and Twofish can also be implemented very efficiently in hardware as they are multiplications by a constant.
Galois field constant multiplication requires far less resources than general multiplications [22].

Based on our evaluation of the AES finalists, the MARS algorithm appeared to be the most resource
intensive based on its use of large S-Boxes, and modulo 232 multiplication. As a result, it was conjectured
that the MARS algorithm would exhibit lesser performance when compared to the other AES finalists. Due
to this evaluation and a lack of development resources, the MARS algorithm was omitted from this study.

4.2 Hardware Architectures

The AES finalists are all comprised of a basic looping structure (some form of either Feistel or substitution-
permutation network) whereby data is iteratively passed through a round function. Based on this looping

structure, the following architecture options were investigated so as to yield optimized implementations:

e Iterative Looping

e Loop Unrolling

e Partial Pipelining

o Partial Pipelining with Sub-Pipelining

Iterative looping over a cipher’s round structure is an effective method for minimizing the hardware
required when implementing an iterative architecture. When only one round is implemented, an n-round
cipher must iterate n times to perform an encryption. This approach has a low register-to-register delay but
a requires a large number of clock cycles to perform an encryption. This approach also minimizes in general
the hardware required for round function implementation but can be costly with respect to the hardware
required for round key and S-Box multiplexing. Iterative looping is a subset of loop unrolling in that only
one round is unrolled whereas a loop unrolling architecture allows for the unrolling of multiple rounds, up to
the total number of rounds required by the cipher. As opposed to an iterative looping architecture, a loop
unrolling architecture where all n rounds are unrolled and implemented as a single combinatorial logic block
maximizes the hardware required for round function implementation while the hardware required for round
key and S-Box multiplexing is completely eliminated. However, while this approach minimizes the number
of clock cycles required to perform an encryption, it maximizes the worst case register-to-register delay for
the system, resulting in an extremely slow system clock.

A partially pipelined architecture offers the advantage of high throughput rates by increasing the number
of blocks of data that are being simultaneously operated upon. This is achieved by replicating the round
function hardware and registering the intermediate data between rounds. Moreover, in the case of a full-
length pipeline (a specific form of a partial pipeline), the system will output a 128-bit block of ciphertext
at each clock cycle once the latency of the pipeline has been met. However, an architecture of this form
requires significantly more hardware resources as compared to a loop unrolling architecture. In a partially
pipelined architecture, each round is implemented as the pipeline’s atomic unit and are separated by the
registers that form the actual pipeline. However, many of the AES finalists cannot be implemented using
a full-length pipeline due to the large size of their associated round function and S-Boxes, both of which
must be replicated n times for an n-round cipher. As such, these algorithms must be implemented as partial
pipelines. Additionally, a pipelined architecture can be fully exploited only in modes of operations which
do not require feedback of the encrypted data, such as Electronic Code-Book or Counter Mode [3, Section
9.9]. When operating in feedback modes such as Ciphertext Feedback Mode, the ciphertext of one block
must be available before the next block can be encrypted. As a result, multiple blocks of plaintext cannot
be encrypted in a pipelined fashion when operating in feedback modes. For the remainder of our discussion,
feedback mode will be abbreviated as FB and non-feedback mode will be abbreviated as NFB.

Sub-pipelining a (partially) pipelined architecture is advantageous when the round function of the
pipelined architecture is complex, resulting in a large delay between pipeline stages. By adding sub-pipeline
stages, the atomic function of each pipeline stage is sub-divided into smaller functional blocks. This results
in a decrease in the pipeline’s delay between stages. However, each sub-division of the atomic function
increases the number of clock cycles required to perform an encryption by a factor equal to the number of
sub-divisions. At the same time, the number of blocks of data that may be operated upon in NFB mode
is increased by a factor equal to the number of sub-divisions. Therefore, for this technique to be effective,
the worst case delay between stages will be decreased by a factor of m where m is the number of added
sub-divisions. However, if the atomic function of the partially pipelined architecture has a small stage de-
lay, sub-dividing the stage will achieve no significant decrease in the worst case stage delay. In this case,
sub-pipelining would result in no significant increase in the system’s clock frequency but would increase the
logic resources and clock cycles required to perform an encryption, resulting in reduced throughput.

Many FPGAs provide embedded RAM which may be used to replace the round key and S-Box multi-
plexing hardware. By storing the keys within the RAM blocks, the appropriate key may be addressed based
on the current round. However, due to the limited number of RAM blocks, as well as their restricted bit
width, this methodology is not feasible for architectures with many pipeline stages or unrolled loops. Those
architectures require more RAM blocks than are typically available. Additionally, the switching time for the
RAM is more than a factor of three longer than that of a standard CLB slice element, resulting in the RAM
element having a lesser speed-up effect on the overall implementation. Therefore, the use of embedded RAM
is not considered for this study to maintain consistency between architectural implementations.

5 Architectural Implementation Analysis

For each of the AES finalists, the four architecture options described in Section 4.2 were implemented in
VHDL using a bottom-up design and test methodology. The same hardware interface was used for each of the
implementations. Round keys are stored in internal registers and all keys must be loaded before encryption
may begin. Key loading is disabled until encryption is completed. These implementations yielded a great
deal of knowledge in regards to the FPGA suitability of each AES finalist. What follows is a discussion of
the knowledge gained regarding each algorithm when implemented using the four architecture types.

5.1 Architectural Implementation Analysis — RC6

When implementing the RC6 algorithm, it was first determined that the RC6 modulo 232 multiplication was
the dominant element of the round function in terms of required logic resources. Each RC6 round requires
two copies of the modulo 232 multiplier. However, it was found that the RC6 round function does not
require a general modulo 232 multiplier. The RC6 multipliers implement the function A (24 + 1) which may
be implemented as 242 + A. Therefore, the multiplication operation was replaced with an array squarer
with summed partial products, requiring fewer hardware resources and resulting in a faster implementation.
The remaining components of the RC6 round function — fixed and variable shifting, bit-wise XOR, and
modulo 23? addition — were found to be simple in structure, resulting in these elements of the round
function requiring few hardware resources. While variable shifting operations have the potential to require
considerable hardware resources, the 5-bit variable shifting required by the RC6 round function required
few hardware resources. Instead of implementing a 32-to-1 multiplexor for each of the thirty-two rotation
output bits (controlled by the five shifting bits), a five-level multiplexing approach was used. The variable
rotation is broken into five stages, each of which is controlled by one of the five shifting bits. For each
rotation output bit of a given stage, a 2-to-1 multiplexor controlled by the stage’s shifting bit is used. This
implementation requires a total of 160 2-to-1 multiplexors as opposed to the thirty-two 32-to-1 multiplexors
required for a one-stage implementation. However, using 2-to-1 multiplexors to form the five-stage barrel-
shifter results in an overall implementation that is smaller and faster when compared to the one-stage
barrel-shifter implementation as described in [18, Section 3.4]. Finally, it was found that the synthesis tools
could not minimize the overall size of a RC6 round sufficiently to allow for a fully unrolled or fully pipelined
implementation of the entire twenty rounds of the algorithm within the target FPGA.

As discussed in Section 4.2, implementing a single round of the RC6 algorithm provides the greatest
area-optimized solution. Further loop unrolling provided only minor throughput increases as the decrease in
the number of cycles per encrypted block was offset by the rapidly decreasing system clock frequency. 2-stage
partial pipelining was found to yield the highest throughput when operating in FB mode, outperforming the
single round iterative looping implementation by achieving a significantly higher system clock frequency.

When operating in NFB mode, a partially pipelined architecture with two additional sub-pipeline stages
was found to offer the advantage of extremely high throughput rates once the latency of the pipeline was
met, with the 10-stage partial pipeline implementation displaying the best throughput and results. Based
on the delay analysis of the partial pipeline implementations, it was determined that nearly two thirds of

the round function’s associated delay was attributed to the modulo 232 multiplier. Therefore, two additional
pipeline sub-stages were implemented so as to subdivide the multiplier into smaller blocks, resulting in a
total of three pipeline stages per round function. As a result, an increase by a factor of more than 2.5 was
seen in the system’s clock frequency, resulting in a similar increase in throughput when operating in NFB
mode. Further sub-pipelining was not implemented as this would require sub-dividing the adders used to
sum the partial products (a non-trivial task) to balance the delay between sub-pipeline stages.

5.2 Architectural Implementation Analysis — Rijndael

When implementing the Rijndael algorithm, it was first determined that the Rijndael S-Boxes were the
dominant element of the round function in terms of required logic resources. Each Rijndael round requires
sixteen copies of the S-Boxes, each of which is an 8-bit to 8-bit look-up-table, requiring significant hardware
resources. However, the remaining components of the Rijndael round function — byte swapping, constant
Galois field multiplication, and key addition — were found to be simple in structure, resulting in these
elements of the round function requiring few hardware resources. Additionally, it was found that the synthesis
tools could not minimize the overall size of a Rijndael round sufficiently to allow for a fully unrolled or fully
pipelined implementation of the entire ten rounds of the algorithm within the target FPGA.

Surprisingly, a one round partially pipelined implementation with one sub-pipeline stage provided the
most area-optimized solution. As compared to a one-stage implementation with no sub-pipelining, the
addition of a sub-pipeline stage afforded the synthesis tool greater flexibility in its optimizations, resulting in
a more area efficient implementation. While 2-stage loop unrolling was found to yield the highest throughput
when operating in FB mode, the measured throughput was within 10% of the single stage implementation.
Due to the probabilistic nature of the place-and-route algorithms, one can expect a variance in performance
based on differences in the starting point of the process. When performing this process multiple times, known
as multi-pass place-and-route, it is likely that the single round implementation would achieve a throughput
similar to that of the 2-stage loop unrolled implementation.

When operating in NFB mode, partial pipelining was found to offer the advantage of extremely high
throughput rates once the pipeline latency was met, with the 5-stage partial pipeline implementation display-
ing the best throughput results. While Rijndael cannot be implemented using a fully pipelined architecture
due to the large size of the round function, significant throughput increases were seen as compared to the
loop unrolling architecture.

Sub-pipelining of the partially pipelined architectures was implemented by inserting a pipeline sub-stage
within the Rijndael round function. Based on the delay analysis of the partial pipeline implementations,
it was determined that nearly half of the round function’s associated delay was attributed to the S-Box
substitutions. Therefore, the additional pipeline sub-stage was implemented so as to separate the S-Boxes
from the rest of the round function. As a result, an increase by a factor of nearly 2 was seen in the system’s
clock frequency, resulting in a similar increase in throughput when operating in NFB mode. Further sub-
pipelining was not implemented as this would require sub-dividing the S-Boxes (a non-trivial task) to balance
the delay between sub-pipeline stages.

5.3 Architectural Implementation Analysis — Serpent

When implementing the Serpent algorithm, it was first determined that since the Serpent S-Boxes are
relatively small (4-bit to 4-bit), it is possible to implement them using combinational logic as opposed to
memory elements. Additionally, the S-Boxes map extremely well to the Xilinx CLB slice, which is comprised
of 4-bit look-up-tables, allowing one S-Box to be implemented in a total of two CLB slices, yielding a compact
implementation which minimizes routing between CLB slices. Finally, the components of the Serpent round
function — key masking, S-Box substitution, and linear transformation — were found to be simple in
structure, resulting in the round function requiring few hardware resources.

Implementing a single round of the Serpent algorithm provides the greatest area-optimized solution.
However, a significant performance improvement was achieved by performing 8-round loop unrolling, remov-
ing the need for S-Box multiplexing hardware as one copy of each possible S-Box grouping is now included
within one of the eight rounds. This amount of loop unrolling achieved a significant performance increase
with little increase in hardware resources due to the compact nature of the Serpent round function. As ex-
pected, unrolling thirty-two rounds of the Serpent algorithm resulted in a lesser performance when compared
to the eight round implementation. Implementing the thirty-two rounds of the algorithm in combinatorial
logic severely hampered the overall clock frequency of the system, overriding the performance increase caused
by the removal of the multiplexing hardware required to switch between keys.

When operating in NFB mode, a full-length pipelined architecture was found to offer the advantage of
extremely high throughput rates once the latency of the pipeline was met, outperforming smaller partially
pipelined implementations. In the fully pipelined architecture, all of the elements of a given round function
are implemented as combinatorial logic. Other AES finalists cannot be implemented using a fully pipelined
architecture due to the larger round functions. However, due to the small size of the Serpent S-Boxes (4-bit
look-up-tables), the cost of S-Box replication is minimal in terms of the required hardware.

Finally, sub-pipelining of the partially pipelined architectures was determined to yield no throughput
increase. Because the round function components are all simple in structure, there is little performance to
be gained by subdividing them with registers in an attempt to reduce the delay between stages. As a result,
the increase in the system’s clock frequency would not outweigh the increase in the number of clock cycles
required to perform an encryption, resulting in a performance degradation.

5.4 Architectural Implementation Analysis — Twofish

When implementing the Twofish algorithm, it was first determined that the synthesis tools were unable
to minimize the Twofish S-Boxes to the extent of other AES finalist algorithms due to the S-Boxes being
key-dependent. Therefore, the overall size of a Twofish round was too large to allow for a fully unrolled
or fully pipelined implementation of the algorithm within the target FPGA. Moreover, the key-dependent
S-Boxes were found to require nearly half of the delay associated with the Twofish round function.

As expected, implementing a single round of the Twofish algorithm provides the greatest area-optimized
solution in terms of total CLB slices required for the implementation. Additional loop unrolling provided
minor throughput increases as the decrease in the number of cycles per encrypted block was offset by the
rapidly decreasing system clock frequency. However, single stage partial pipelining with one sub-pipeline
stage was found to yield the best throughput and when operating in feedback mode. With a small increases
in the required hardware resources, the sub-pipelined architecture was able to reach a significantly faster
system clock frequency as compared to the loop unrolling and partial pipeline implementations.

When operating in NFB mode, a partially pipelined architecture was found to offer the advantage of
extremely high throughput rates once the latency of the pipeline was met, with the 8-stage partial pipeline
implementation displaying the best throughput results. While Twofish cannot be implemented using a fully
pipelined architecture due to the large size of the round function, significant throughput increases were seen
as compared to the loop unrolling architecture.

Finally, sub-pipelining of the partially pipelined architectures was implemented by inserting a pipeline
sub-stage within the Twofish round function. Based on the delay analysis of the partial pipeline implemen-
tations, it was determined that nearly half of the round function’s associated delay was attributed to the
S-Box substitutions. Therefore, the additional pipeline sub-stage was implemented so as to separate the
S-Boxes from the rest of the round function. As a result, an increase by a factor of nearly 2 was seen in
the system’s clock frequency, resulting in a similar increase in throughput when operating in NFB mode.
Further sub-pipelining was not implemented as this would require sub-dividing the S-Boxes (a non-trivial
task) to balance the delay between sub-pipeline stages.

6 Performance Evaluation

Tables 2 and 3 detail the throughput measurements for the implementations of the three architecture types
for each of the AES finalists for both NFB and FB mode. The architecture types — loop unrolling (LU),
full or partial pipelining (PP), and partial pipelining with sub-pipelining (SP) — are listed along with the
number of stages and (if necessary) sub-pipeline stages in the associated implementation; e.g., LU-4 implies
a loop unrolling architecture with four rounds, while SP-2-1 implies a partially pipelined architecture with
two stages and one sub-pipeline stage per pipeline stage. As a result, the SP-2-1 architecture implements
two rounds of the given cipher with a total of two stages per round. Throughput is calculated as:

Throughput := (128 Bits * Clock Frequency)/(Cycles Per Encrypted Block)

Note that the implementation of a one stage partial pipeline architecture, an iterative looping architecture,
and a one round loop unrolled architecture are all equivalent and are therefore not listed separately. Also
note that the computed throughput for implementations that employ any form of hardware pipelining (as
discussed in Section 4) are made assuming that the pipeline latency has been met.

The number of CLBs required as well as the maximum operating frequency for each implementation
was obtained from the Xilinx report files. Note that the Xilinx tools assume the absolute worst possible
operating conditions — highest possible operating temperature, lowest possible supply voltage, and worst-
case fabrication tolerance for the speed grade of the FPGA [23]. As a result, it is common for actual
implementations to achieve slightly better performance results than those specified in the Xilinx report files.

While this study focuses on high throughput implementations, the hardware resources required to achieve
this throughput is also a critical parameter. No established metric exists to measure the hardware resource
costs associated with the measured throughput of an FPGA implementation. Two area measurements of
FPGA utilization are readily apparent — logic gates and CLB slices. It is important to note that the logic
gate count does not yield a true measure of actual FPGA utilization. Hardware resources within CLB slices
may not be fully utilized by the place-and-route software so as to relieve routing congestion. This results in
an increase in the number of CLB slices without a corresponding increase in logic gates. To achieve a more
accurate measure of chip utilization, CLB slice count was chosen as the most reliable area measurement.
Therefore, to measure the hardware resource cost associated with an implementation’s resultant throughput,
the Throughput Per Slice (TPS) metric is used. We defined TPS as:

TPS := (Encryption Rate)/(# CLB Slices Used)

Therefore, the optimal implementation will display the highest throughput and have the largest TPS. Note
that the TPS metric behaves inversely to the classical time-area (TA) product.

When comparing implementations using the TPS and throughput metrics, it is required that the archi-
tectures are implemented on the same FPGA. Different FPGAs within the same family yield different timing
results as a function of available logic and routing resources, both of which change based on the die size
of the FPGA. Additionally, it is impossible to legitimately compare FPGAs from separate families as each
family of FPGAs has a unique architecture which greatly affects the measured throughput and TPS. Finally,
it is critical to note that throughput (and therefore TPS) may not scale linearly based on the number of
rounds implemented for the three architecture types detailed in Section 4.1. As a result, it is imperative that
multiple implementations be examined for each architecture type, varying the round count to determine the
optimal number of rounds per implementation.

10

Clock Frequency | Cycles per | Throughput
Algorithm | Architecture | Slices (MHz) Block (Mbit /s)
RC6 LU-1 2638 13.8 20 88.5
RC6 LU-2 3069 7.3 10 94.0
RC6 LU-4 4070 3.7) 94.8
RC6 LU-5 4476 2.9 4 92.2
RC6 LU-10 6406 1.5 2 974
RC6 PP-2 3189 19.8 10 253.0
RC6 PP-4 4411 12.3) 315.5
RC6 PP-5 4848 12.1 4 386.7
RC6 PP-10 7412 13.3 2 848.1
RC6 SP-1-1 2967 26.2 20 167.6
RC6 SP-2-1 3709 26.4 10 337.8
RC6 SP-4-1 5229 24.6 5 629.8
RC6 SP-5-1 5842 25.8 4 825.2
RC6 SP-10-1 8999 26.6 2 1704.6
RC6 SP-1-2 3134 39.1 20 250.0
RC6 SP-2-2 4062 38.9 10 497.4
RC6 SP-4-2 5908 31.3 5 802.3
RC6 SP-5-2 6415 33.3 4 1067.0
RC6 SP-10-2 10856 37.5 2 2397.9
Rijndael LU-1 3528 25.3 11 294.2
Rijndael LU-2 5302 14.1 6 300.1
Rijndael LU-5 10286 5.6 3 2374
Rijndael PP-2 5281 23.5 5.5 545.9
Rijndael PP-5 10533 20.0 2.2 1165.8
Rijndael SP-1-1 3061 40.4 10.5 491.9
Rijndael SP-2-1 4871 38.9 5.25 949.1
Rijndael SP-5-1 10992 31.8 2.1 1937.9
Serpent LU-1 5511 15.5 32 61.9
Serpent LU-8 7964 13.9 4 444.2
Serpent LU-32 8103 24 1 312.3
Serpent PP-8 6849 30.4 4 971.8
Serpent PP-32 9004 38.0 1 4860.2
Twofish LU-1 2666 13.0 16 104.2
Twofish LU-2 3392 7.1 8 113.6
Twofish LU-4 4665 3.3 4 106.8
Twofish LU-8 6990 1.7 2 108.1
Twofish PP-2 3519 11.9 8 190.4
Twofish PP-4 5044 11.5 4 369.3
Twofish PP-8 7817 10.8 2 689.5
Twofish SP-1-1 3053 29.9 16 239.2
Twofish SP-2-1 3869 28.6 8 457.1
Twofish SP-4-1 5870 27.3 4 872.3
Twofish SP-8-1 9345 24.8 2 1585.3

Table 2: AES finalist performance evaluation — non-feedback mode

11

Clock Frequency | Cycles per | Throughput
Algorithm | Architecture | Slices (MHz) Block (Mbit/s)
RC6 LU-1 2638 13.8 20 88.5
RC6 LU-2 3069 7.3 10 94.0
RC6 LU-4 4070 3.7 5 94.8
RC6 LU-5 4476 2.9 4 92.2
RC6 LU-10 6406 1.5 2 974
RC6 PP-2 3189 19.8 20 126.5
RC6 PP-4 4411 12.3 20 78.9
RC6 PP-5 4848 12.1 20 77.3
RC6 PP-10 7412 13.3 20 84.8
RC6 SP-1-1 2967 26.2 40 83.8
RC6 SP-2-1 3709 26.4 40 84.5
RC6 SP-4-1 5229 24.6 40 78.7
RC6 SP-5-1 5842 25.8 40 82.5
RC6 SP-10-1 8999 26.6 40 85.2
RC6 SP-1-2 3134 39.1 60 83.3
RC6 SP-2-2 4062 38.9 60 82.9
RC6 SP-4-2 5908 31.3 60 66.9
RC6 SP-5-2 6415 33.3 60 71.1
RC6 SP-10-2 10856 37.5 60 79.9
Rijndael LU-1 3528 25.3 11 294.2
Rijndael LU-2 5302 14.1 6 300.1
Rijndael LU-5 10286 5.6 3 2374
Rijndael PP-2 5281 23.5 11 273.0
Rijndael PP-5 10533 20.0 11 233.2
Rijndael SP-1-1 3061 40.4 21 246.0
Rijndael SP-2-1 4871 38.9 21 237.3
Rijndael SP-5-1 10992 31.8 21 193.8
Serpent, LU-1 5511 15.5 32 61.9
Serpent LU-8 7964 13.9 4 444.2
Serpent LU-32 8103 24 1 312.3
Serpent PP-8 6849 30.4 32 121.5
Serpent PP-32 9004 38.0 32 151.9
Twofish LU-1 2666 13.0 16 104.2
Twofish LU-2 3392 7.1 8 113.6
Twofish LU-4 4665 3.3 4 106.8
Twofish LU-8 6990 1.7 2 108.1
Twofish PP-2 3519 11.9 16 95.2
Twofish PP-4 5044 11.5 16 92.3
Twofish PP-8 7817 10.8 16 86.2
Twofish SP-1-1 3053 29.9 32 119.6
Twofish SP-2-1 3869 28.6 32 114.3
Twofish SP-4-1 5870 27.3 32 109.0
Twofish SP-8-1 9345 24.8 32 99.1

Table 3: AES finalist performance evaluation — feedback mode

12

Alg. Arch. | Throughput (Gbit/s) Slices | TPS

RC6 SP-10-2 2.40 10856 | 220881
Rijndael | SP-5-1 1.94 10992 | 176297
Serpent | PP-32 4.86 9004 | 539778
Twofish | SP-8-1 1.59 9345 | 169639

Table 4: AES finalist performance evaluation — non-feedback mode speed-optimized implementations

6 -

4

G hit/s

2

0 T T T 1
RC6 Rijndael Serpent Twofish
Figure 1: Best throughput — non-feedback mode

Alg. Arch. | Throughput (Mbit/s) Slices | TPS
RC6 PP-2 126.5 3189 | 39662
Rijndael | LU-2 300.1 5302 | 56605
Serpent | LU-8 444.2 7964 | 55771
Twofish | SP-1-1 119.6 3053 | 39169

Table 5: AES finalist performance evaluation — feedback mode speed-optimized implementations

500 -
400
300
200
100 +— —
0 T T T 1

RC6 Rijndael Serpent Twofish

Figure 2: Best throughput — feedback mode

M bit/s

Tables 4 and 5 detail the optimal implementations of the AES finalists in both FB and NFB modes.
Additionally, TPS is also shown for each of the implementations. It is critical to note that for the purposes
of this study, the optimal implementation for an AES finalist is defined to yield the highest throughput. As
previously discussed, the synthesis tools were set to optimize for speed to guarantee that the highest throughputs
would be achieved for each implementation. However, should an optimal implementation be defined based on
either TPS or area, the implementation results shown in Tables 2 and 3 (and, as a result, those shown in
tables 4 and 5 as well) are no longer representative of the best possible implementations for the architectures
studied. To achieve a true representation that defines optimality based on either TPS or area, synthesis must
be performed with the tools set to optimize for area. While an area-efficiency analysis of the AES finalists
warrants investigation, it is beyond the scope of this study.

Based on the data shown in Tables 4 and 5, the Serpent algorithm clearly outperforms the other AES
finalists in both modes of operation. As compared to its nearest competitor, Serpent exhibits a throughput
increase of a factor 2.2 in NFB mode and a factor 1.5 in FB mode. Interestingly, RC6, Rijndael, and Twofish

13

all exhibit similar performance results in NFB mode. However, Rijndael exhibits significantly improved
performance in FB mode as compared to RC6 and Twofish, although it is still 50% slower than Serpent.

One of the main findings of our investigation, namely that Serpent appears to be especially well suited
for an FPGA implementation from a performance perspective, seems especially interesting considering that
Serpent is clearly not the fastest algorithm with respect to most software comparisons [5]. Another major
result of our study is that all four algorithms considered easily achieve Gigabit encryption rates with standard
commercially available FPGAs. The algorithms are at least one order of magnitude faster than the best
reported software realizations. These speed-ups are essentially achieved by parallelization (pipelining and
sub-pipelining) of the loop structure and by wide operand processing (e.g., processing of 128 bits in once
clock cycle), both of which are not feasible on current processors. We would like to stress that the pipelined
architectures cannot be used to their maximum ability for modes of operation which require feedback (CFB,
OFB, etc.) However we believe that for many applications which require high encryption rates, non-feedback
modes (or modified feedback modes such as interleaved CFB [3, Section 9.12]) will be the modes of choice.
Note that the Counter Mode grew out of the need for high speed encryption of ATM networks which required
parallelization of the encryption algorithm.

7 Conclusions

The importance of the Advanced Encryption Standard and the significance of high throughput implemen-
tations of the AES finalists has been examined. A design methodology was established which in turn led to
the architectural requirements for a target FPGA. The core operations of the AES finalists were identified
and multiple architecture options were discussed. The implementation of each architecture option for each
of the AES finalists was analyzed to determine their suitability for hardware implementation. Based on the
implementation results, the best speed-optimized implementations were identified for each AES finalist in
both non-feedback and feedback modes. Upon comparison, it was determined that the Serpent algorithm
yielded the best performance in both modes, where best performance was defined strictly as the highest
throughput. The Serpent algorithm outperforms its nearest competitor by a factor of 2.2 in non-feedback
mode and by a factor of 1.5 in feedback mode.

8 Acknowledgement

We would like to thank Pawel Chodowiec and Kris Gaj from George Mason University for their helpful
discussion and the VHDL code modules that were provided to assist in the implementation of some of
the AES finalists. We would also like to thank Alan Martello from the University of Pittsburgh for his
public-domain VHDL code module that was used in implementation of the AES finalists.

References

[1] D. Stinson, Cryptography, Theory and Practice. Boca Raton, FL: CRC Press, 1995.

[2] National Institute of Standards and Technology (NIST), Second Advanced Encryption Standard (AES)
Conference, (Rome, Italy), March 1999.

[3] B. Schneier, Applied Cryptography. John Wiley & Sons Inc., 2nd ed., 1995.
[4] R. Doud, “Hardware Crypto Solutions Boost VPN,” EETimes, pp. 5764, April 1999.

[5] B. Gladman, “Implementation Experience with AES Candidate Algorithms,” in Proceedings: Second
AES Candidate Conference (AES2), (Rome, Italy), March 1999.

14

[6]

[19]
[20]

[21]

[22]

[23]

J. Kaps and C. Paar, “Fast DES Implementations for FPGAs and its Application to a Universal Key-
Search Machine,” in 5th Annual Workshop on Selected Areas in Cryptography (SAC ’98) (S. Tavares and
H. Meijer, eds.), vol. LNCS 1556, (Queen’s University, Kingston, Ontario, Canada), Springer-Verlag,
August 1998.

E. Biham, “A Fast New DES Implementation in Software,” in Fast Software Encryption. 4th Interna-
tional Workshop, FSE’97 Proceedings, (Berlin), pp. 260-272, Springer-Verlag, 1997. Lecture Notes in
Computer Science Volume 1267.

A. Pfitzmann and R. Assman, “More Efficient Software Implementations of (Generalized) DES,” Com-
puters € Security, vol. 12, no. 5, pp. 477-500, 1993.

J. Hughes, “Implementation of NBS/DES Encryption Algorithm in Software,” in Colloquium on Tech-
niques and Implications of Digital Privacy and Authentication Systems, 1981.

D. Runje and M. Kovac, “Universal Strong Encryption FPGA Core Implementation,” in Proceedings of
Design, Automation, and Test in Europe, (Paris, France), pp. 923-924, February 1998.

O. Mencer, M. Morf, and M. Flynn, “Hardware Software Tri-Design of Encryption for Mobile Commu-
nication Units,” in Proceedings of International Conference on Acoustics, Speech, and Signal Processing,
(Seattle, WA), May 1998.

A. Elbirt, “An FPGA Implementation and Performance Evaluation of the CAST-256 Block Cipher,”
Technical Report, Cryptography and Information Security Group, Electrical and Computer Engineering
Department, Worcester Polytechnic Institute, Worcester, MA, May 1999.

M. Riaz and H. Heys, “The FPGA Implementation of RC6 and CAST-256 Encryption Algorithms,” in
accepted for CCECE’99, (Edmonton, Alberta, Canada), 1999.

C. Phillips and K. Hodor, “Breaking the 10k FPGA Barrier Calls For an ASIC-Like Design Style,”
Integrated System Design, 1996.

R. Anderson, E. Biham, and L. Knudsen, “Serpent: A Proposal for the Advanced Encryption Standard,”
in First Advanced Encryption Standard (AES) Conference, (Ventura, CA), 1998.

B. Schneier, J. Kelsey, D. Whiting, D. Wagner, and C. Hall, “Twofish: A 128-Bit Block Cipher,” in
First Advanced Encryption Standard (AES) Conference, (Ventura, CA), 1998.

J. Daemen and V. Rijmen, “AES Proposal: Rijndael,” in First Advanced Encryption Standard (AES)
Conference, (Ventura, CA), 1998.

R. Rivest, M. Robshaw, R. Sidney, and Y. Yin, “The RC6M Block Cipher,” in First Advanced En-
cryption Standard (AES) Conference, (Ventura, CA), 1998.

Xilinx Inc., Virtex 2.5V Field Programmable Gate Arrays, 1998.

B. Chetwynd, “Universal Block Cipher Module: Towards a Generalized Architectures for Block Ci-
phers,” Master’s thesis, Worcester Polytechnic Institute, Worcester, MA, November 1999.

S. Brown and J. Rose, “FPGA and CPLD Architectures: A Tutorial,” in IEEE Design & Test of
Computers, vol. 13, no. 2, pp. 42-57, 1996.

C. Paar, “Optimized Arithmetic for Reed-Solomon Encoders,” in 1997 IEEFE International Symposium
on Information Theory, (Ulm, Germany), p. 250, June 29 — July 4 1997.

P. Alfke, “Xilinx M1 Timing Parameters.” electronic mail personal correspondance, December 1999.

15

A Comparison of the AES Candidates Amenability to
FPGA Implementation

Nicholas Weaver, John Wawrzynek
{nweaver,johnw } @Qcs.berkeley.edu*

March 15, 2000

Abstract

The 5 final AES candidates, MARS, RC6, Rijndael, Serpent, and Twofish, are all
intended to run well both on hardware and software implementations. However, the
different algorithms may result in significant differences in cost and performance when
implemented on FPGAs or in small custom devices. This document discusses the var-
ious algorithms from the perspective of a potential FPGA implementer. Rijndael and
Twofish are excellent candidates from a hardware designer’s viewpoint, while MARS
is particularly expensive and inefficient.

1 Introduction

The 5 final AES candidates, MARS[2], RC6[6], Rijndael[4], Serpent[1], and Twofish[7], are
all designed to run efficiently on a wide variety of hardware and software. However, the
candidates vary in their amenability to hardware implementations. In this paper we esti-
mate the relative cost and performance for various possible implementations of the different
AES algorithms. Although no actual implementations are realized, it is straightforward to
estimate the cost of various possible realizations of the AES candidates.

2 Observations on the candidates

The following observations will be justified throughout the paper.

MARS is not a very suitable cipher for a hardware implementation. The three separate
round types, the use of both an expensive multiplier and numerous large S-box references,
and a complicated subkey generation, all combine to make it a poor candidate.

RC6, though it uses comparatively expensive operations, is a reasonable candidate unless
subkey generation is important. The ability to reasonably reduce the hardware requirements
without sacrificing too much performance is present, a useful feature when a low cost im-
plementation is desired. However, the subkey generation, which has a tight dependency and
needs to visit elements multiple times, poses a considerable challenge for any application
which needs to change keys frequency.

Rijndael i1s probably the best candidate when subkey flexibility isn’t essential. All op-
erations are highly parallel but comparatively inexpensive in hardware, and the subkey
generation is both fast and compact. However, the additional cost of creating a separate
datapath if decryption is required somewhat hampers the design, and the subkey generation
may still have an impact, depending on the application.

Serpent, surprisingly enough, is not the best candidate from a hardware standpoint.
Although it uses very short operations which map naturally to hardware, 32 instances of

*This work was suppored by DARPA, contract number DABT63-96-C-0048. Further support comes from
the California State MICRO Program.

each of the 8 types of S-boxes quickly add up, and if a compact implementation is desired, the
bandwidth is considerably reduced. Also, there is essentially no sharing between encryption
and decryption pipelines.

Twofish is the best overall from a hardware viewpoint. Although not as fast as Rijndael
and Serpent, the ability to perform encryption and decryption with a trivially modified
pipeline is quite valuable. Also, there is a nice tradeoff space between area and performance.
If subkeys are not changed, the subkey generation can largely be folded into the pipeline.
If area is still tight, the pipeline can be folded in half. However, if subkeys are changed
often and performance is critical, the ability to change subkeys from block to block with
almost no performance penalty, whether encrypting or decrypting, is of significant potential
benefit. This degree of flexibility is unique to Twofish, and is a very desirable property.

3 Possible implementation techniques

There are 3 primary criteria when measuring the candidates using a hardware metric: la-
tency, bandwidth, and area. Latency is the amount of time required to encrypt a single
block of data. If the cipher is operating in CFB or similar modes, the latency of encryption
may be the critical factor. Bandwidth is the number of blocks which can be computed in a
given period of time. If there is no feedback on the ciphertext, such as in ECB mode, band-
width indicates how fast data can be encrypted. Area 1s a specific metric, which generally
suggests the cost for an implementation. Lower area is generally beneficial, as this allows
lower cost parts to be used.

The implementation fabric being considered is the Xilinx Virtex[9] Field Programmable
Gate Array, which consists of an array of 4 input lookup tables (4-LUTs)! and associated
flip flops, plus a perimeter of medium sized, dual ported, 512 byte BlockRAM memories?.
Each 4-input lookup table can also act as a 16-bit RAM, for storing temporary values.

Embedded, small to medium sized memory blocks are becoming ubiquitous on modern
FPGAs, although many older devices (such as the Xilinx 4000 series) lack such features.
Thus, the use of such memories needs to be considered separately. It is, however, safe to
assume that practically all future devices will have such capabilities.

It is comparatively easy to estimate the size of a hand layed out datapath for these
applications, as the dataflows are suitably regular to allow the functional units to be packed
together. The cost of the control logic is not considered, because for the AES candidates
the primary cost is the datapath.

Similarly, the cost of generating the encryption subkeys is considered separately; for some
algorithms subkey generation may be better implemented on a small microcontroller®. Some
applications may use constant subkeys or subkeys which change only rarely, in which case
subkey generation time is not a concern. However, in other applications where encryption
keys may change on a packet-by-packet basis, subkey generation can become the dominant
factor in the time it takes to encrypt a block.

Although the sketches described are geared towards FPGAs, a good rule of thumb is
that, except for memories, logic in an FPGA takes roughly ten times the silicon area of an
ASIC, while using very similar design techniques. Thus, these implementation techniques
and relative cost metrics could carry over into the ASIC realm.

There are three common hardware implementation techniques considered. These are
small microcoded datapaths; a pipelined, single or multiple round, C-slow* structure; and
a fully unrolled datapath.

A microcoded datapath may be the most compact design, but often suffers from very
poor bandwidth. It consists of a register file, a datapath of several functional units cus-

1A 4-input lookup table can realize any boolean of 4 inputs

2These are small, 8 address, 16b wide memories, which have two separate address and data ports. This
allows two separate memory locations to be written or read in a single cycle.

3There is a current trend towards FPGAs with microcontrollers, such as the Triscent parts[g].

4Two paragraphs further defines C-slow. Be patient.

tomized to the application at hand, and a small program (usually contained in a small
ROM) which controls the datapath. The problem with such implementations is that the
aggregate bandwidth is usually very low and the design is unable to utilize the parallelism
inherent in the algorithm.

A (C-slow datapath implements a single round or group of rounds, separated into C
pipeline stages which operate on different blocks. This allows for considerably higher band-
width then a single iterative round, as C' independent blocks can be processed through the
pipeline. The number C' is usually chosen to match the desired clock rate. A C-slow pipeline
can run at a high clock rate and adding more register stages can allow an even higher clock
rate (and therefore higher bandwidth) without affecting the latency®. Furthermore, since
more operations can be done in parallel, this technique may improve the overall latency
when compared with a microcoded implementation.

For most algorithms, a C-slow, single round pipeline should require roughly the same
area as a microcoded datapath or an unpipelined round, while offering a considerable im-
provement in bandwidth, as the functional units are more highly utilized. Thus, a C-slow
technique should always be utilized unless such a design simply can not be implemented in
the available area or the implementation fabric is flip-flop poor.

A fully unrolled datapath, where each round is separatly implemented in hardware, can
be similarly pipelined to run at a high speed. This offers essentially no latency advantage
over a C-slow datapath, but allows for the maximum bandwidth possible. The number
of pipeline stages is chosen in a similar way to the C-slow implementations, to provide
operation which matches a target clock rate. The area cost and available bandwidth of a
full pipeline are a simple multiple of the area and bandwidth for a C-slow implementation,
so unrolled pipelines are not considered in detail in this analysis.

In general, we will attempt to roughly estimate the number of pipeline stages which
would be required to allow a Virtex implementation to run at a 50 MHz clock cycle. A
typical, modern, midsized FPGA such as the Virtex XCV200 contains 5000 4-LUTs and 14
BlockRAMs, while a typical compact, low cost FPGA such as the Xilinx Spartan2® X(C2S50
contains 1,700 LUTs and 8 BlockRAMs.

Though these implementation sketches are for a particular FPGA fabric, these compar-
isons should carry over” to other FPGAs and small ASICs.

4 Cryptographic core

The cost for the different implementation’s cryptographic cores were estimated by summa-
rizing the costs of their respective subcomponents.

Serpent is the best from a pure performance viewpoint in hardware, although Rijndael
and Twofish are close to it in performance and area/performance. The significant problem
with Serpent is there is a significant minimum size for the implementation to be effective.
MARS is comparatively awkward, requiring both a relatively large amount of logic and a
large amount of ROM for table lookups.

The other problem with Rijndael and Serpent is that separate pipelines are required
for encryption and decryption. Having to implement separate pipelines for encryption and
decryption doubles the area of an implementation if both operations are required.

A RC6 pipeline can be easily modified to perform both encryption and decryption by
replacing the adders with adder/subtracters (a no cost or very low-cost transformation).
The Feistel basis of MARS and Twofish allow a slightly tweaked pipeline to handle both
rolls effectively.

5This technique has a limit of the setup and hold time of the flip flop, and the granularity at which
different paths may require different latencies.

6 A low cost revision of the Virtex

7 Although with some caveats, usually dealing with local memories and the use of tristate buffers to
implement wide muxes, which may not be present in other FPGA fabrics

Algorithm Implementation Latency Bandwidth Size Size
(cycles) | (blocks/cycle) | (4-LUTs) | (BlockRAM)
MARS Microcoded datapath 480 1/480 770 8
6-Slow, single round 190 1/16 1500 12
RC6 5-Slow, single round 102 1/20 1700 0
8-Slow, folded round 164 1/40 950 0
Rijndael 2-Slow, single round 20 1/10 780 8
Serpent 8 slow, 8 round 32 1/4 3800 0
single round 32 1/32 1600 0
Twofish 3-Slow, single round 50 1/16 1350 0
4-Slow, folded round 66 1/32 870 0

Figure 1: A comparison of the implementation costs for the various algorithms

A mixed Rijndael pipeline can share the S-boxes by separating the transformation from
the S-box, which adds a small step and some area. However, this approach still requires a
completely different column mixing step and therefore a fairly significant area cost to handle
both encryption and decryption. Some implementations would probably just use separate
pipelines, since depending on the implementation technology, the cost of the S-boxes may
be dwarfed by the remaining costs.

Serpent can share almost no area between encryption and decryption, since it is depen-
dent on inverse-sboxes and inverse-transformations for decryption. This essentially doubles
the cost of a Serpent device which performs both encryption and decryption.

4.1 MARS

MARS is unfortunately comparatively costly to implement on small devices, as a microcoded
datapath is more compact then a C-slow pipeline. There are also several comparatively
expensive elements: variable rotations, the numerous, large S-box references, and the 32 bit
multiplier. Since the multiplier and rotates are on the critical path and can not have their
latencies hidden, a fast array multiplier and a barrel rotator are necessary to achieve good
performance.

4.1.1 Microcoded datapath

A microcoded datapath would require 4 BlockRAMs for a 32 bit, 2 read, one write port
register file for a scratchpad and subkey storage, another 4 BlockRAMs used as ROMs to
store the S-Box, 32 LUTs for the XOR, 32 LUTs for the adder/subtracter, 160 LUTs for a
barrel rotator, and 512 LUTs for an array multiplier®. Thus, this datapath requires roughly
8 BlockRAMs and 768 LUTs.

Assuming a single cycle latency for all operations but the multiplier, and assuming
3 cycles for the multiplier, it would take roughly 13 operations for each round of forward
mixing, 18 for one round of the cryptographic core, and 12 rounds for the backwards mixing.
Thus, it would require at least 480 cycles of latency for a single encryption. Furthermore,
it is very difficult to run more than one or two blocks through such a datapath.

4.2 Full Round, C-slow

A C-slow pipeline is less compact on MARS when compared to other algorithms, due to the
expense of various components and the 3 separate round types. The forward mixing would
require 4 BlockRAMs for the S-box halves and 172 LUTs for the logic. The core would

8 A booth encoded, shift and add multiplier could probably be constructed for only 64 to 128 LUTs, but
would require 16 cycles/multiply instead of 3 cycles cycles

require roughly 4 BlockRAMs for the sbox, 64 LUTs to store the subkeys, 512 LUTs to
compute R, 172 LUTs to compute M, and 172 LUTs to compute L, plus an additional 150
LUTs to compute B, C, and D, for a total of 1070 LUTs and 4 BlockRAMs for the core.
The final mixing would require another 4 BlockRAMs and 172 LUTs for logic, for a total
of 12 BlockRAMs and nearly 1500 LUTs. The number of 4-LUTs is reasonable, but the
large number of S-box references are a considerable expense, making this implementation
prohibitive on devices without local memories to use for the S-boxes.

In order to run the central core at a desired 50 MHz, it would probably be necessary to
run it 6-slow®, with the forward and backward mixings running 3 slow This would require
192 cycles of latency to encrypt a single block, but would produce one block every 16 clock
cycles.

The biggest problem with MARS is the numerous references to the large S-Boxes. If
a bandwidth-oriented implementation is desired, the number of S-Box references becomes
very expensive. The 32 bit, modulo 232 multiplier is expensive, but not prohibitively slow.
Finally, the 2 variable rotations are moderately expensive operations. The biggest expense
is the three different round types: although not a concern for a software implementor, it is
a significant handicap for hardware designs.

4.3 RCe6

RC6 uses operations which, while inexpensive in a modern microprocessor, are moderately
expensive in hardware. A 32 bit, modulo 232 multiplier require 512 LUTs, and a 32 bit
rotator would require 160 LUTs to accomplish. However, there is a nice ability to trade off
performance for area in this design.

4.3.1 Full round, C-slow

The most straightforward, compact implementation of RC6 is a single round, C-slow im-
plementation. The initial and final keys are best stored in registers, while the remaining
keys would fit in 128 LUTs. The MUZXes on the start of the pipeline (to select between the
input and the result from the previous round) require 128 LUTs, and the input and output
whitening each require 64 LUTs.

The pipeline for the round itself would need 512 LUTs for each F function to perform
the 32 bit multiplication. The variable rotations require 160 LUTs but can be combined
with the XOR operation, and each of the subkey additions requires 32 LUTs. When added
to the hardware required for muxing plus the initial and final adders, the total comes to
roughly 1700 LUTs for the pipeline.

It should take 3 cycles to perform the F function, another cycle for the rotation, and
a final cycle for the subkey addition, suggesting that a 5-slow pipeline would be sufficient.
This would require 102 cycles latency to produce a result but would be able to produce a
result every 20 cycles.

4.3.2 Compact, half-round, C-slow design

There are some tricks which can be used for a more compact RC6 design. Since both sides
of a round are identical, the implementer could build a half-round, C-slow implementation
which folds the two halves together. This roughly cuts the resource requirements and
bandwidth in half, and adds three cycles of latency per round in order to exchange ¢ and u
and to perform the exchange at the end of each round, with an addititonal cycle of padding
to implement a round in an even number of clock periods. In a case where bandwidth 1is
as important as latency while resources are heavily constrained, this technique would be
significantly prefered over a microcoded datapath.

93 cycles to compute R, 1 cycle to compute M, 1 to compute L, and 1 cycle to compute the new values

of B, C, and D

The additional costs of such a datapath are one extra cycle for each swap and one cycle for
padding, making the pipeline 8-slow and uping the latency to 164 cycles, and the bandwidth
reduced to one block every 40 cycles. This allows the core to be almost cut in half, to 870
LUTs, with another 32 LUTs to store the remaining subkeys. Also, an additional 40 LUTs
are required for various MUXes, and the subkey storage and whitening remain unchanged.
Thus, the cost of such an implementation would be roughly 950 LUTs.

4.4 Rijndael

Rijndael’s number of rounds depends on the key size. For this analysis both the block and
key size are 128 bits. Rijndael has a high degree of parallelism, with very short operations
and a small number of rounds, which makes 1t one of the fastest candidates for a hardware
implementer.

The Mix-column operation of Rijndael would require 8 LUTs for the accumulation of
each byte, with each multiplication probably reducable into 8 LUTs similar to the technique
in [3]. Thus, the entire mix column for one 32-bit word would probably require on the order
of 100 4-LUTs.

A round of Rijndael requires 8 BlockRAMs to store the S-boxes for the byte substitution'?,
no area for the row shifting operation, 400 LUTs for the 4 column mixes, 128 LUTs for the
key xors and the bypassing of the final column mix, 128 LUTs for the input subkey addition
and pipeline MUXes, and 128 LUTs to store the subkeys.

The net result is probably 780 LUTs and 8 BlockRAMs for a single round implemen-
tation. With a critical path of 1 memory access, 3 LUTs for the column mixing, and one
for the round key addition, a one or two cycle latency is reasonable for a round. With only
10 rounds of encryption, this results in an incredibly low 20 cycles of latency, with a block
every 10 cycles.

Rijndael performs a greater number of rounds when used with a larger subkey. This
would not affect the area required but would increase the latency and reduce the bandwidth.
With 2 clock cycles for each round, it is straightforward to extrapolate the cost of a larger
subkey.

4.5 Serpent

Serpent’s operations, being very DES-like, map extremely well into hardware. The choice
of 4 input, 4 output S-boxes allow each S-box to occupy only 4 4-LUTs, while XORs are
very inexpensive, and constant rotations and permutations are free. However, although
the algorithm is very fast, a considerable amount of area is required for the S-boxes which
make Serpent surprisingly costly in hardware, even though its basic operations are very
inexpensive.

4.5.1 Serpent 8-round, 8-slow

Due to the nature of Serpent’s S-box use, the sweet spot for a serpent implementation is to
unroll 8 rounds. The initial and final permutations require only wiring, not lookup tables,
so the entire cost is in the encryption core.

A single round requires 128 LUTs for the key XORs, 128 LUTs to store the subkeys for
the round, 128 LUTSs for the S-boxes, and 160 LUTs for linear transformation, for a total of
544 LUTs for a single round. In a pipeline, a savings of 64 LUTs/round could be achieved
by combining two of the key XORs with the linear transformation from the previous round,
at the cost of some design complexity. For an 8 round pipeline, the total comes to 3800
LUTs for the entire pipeline.

10 There is some wasted memory here due to the size of the BlockRAMs. Only half of the bits are actually
used, which indicates that in a technology where the 8x8 S-boxes are directly implemented the area occupied
would be smaller

Since each round consists only of bitwise operations and fixed rotations with a critical
path of only 5 LUT evaluations, it should be pipelineable with only one cycle/round. Tt
may even be possible to complete 1.5 to 2 rounds in a single cycle, reducing the latency
further, since this critical path is so short. Thus, the 8 round pipeline would be run 8 slow,
producing a result every 4 cycles, with a low latency of 32 cycles to encrypt a single block.

4.5.2 Serpent single round

A single round implementation would still need to implement all possible S-Boxes, a wide
muxing step to combine the results would best be implemented with tristate buffers. Thus,
1024 LUTs would be required for the S-Boxes, 256 LUTs to store the round subkeys, 128
LUTs for the key XOR, and 160 for the linear transform. The resulting single-round imple-
mentation would require 1600 LUTs. This also introduces one more evaluation (the muxing
of the S-boxes to select the correct one) into the critical path.

If pipelined at the same rate as the 8-round version, this would produce a result every 32
clock cycles, with an identical latency of 32 cycles. Since this only represents a 40% savings
in area but an 8-fold reduction in bandwidth, this is not a beneficial tradeoff in most cases.

4.6 Twofish

Twofish works well in hardware without requiring memory to implement S-boxes. Though
it is not the fastest or the most compact, it is reasonably small and has other advantages,
including a nice area/performance tradeoff and the ability to perform encryption and de-
cryption with a slightly modified pipeline.

The building block of Twofish, the i function, maps reasonably well to FPGA logic. Each
q permutation requires 24 LUTs to implement, integrated with the S-box key XORing, for
a total of 288 LUTs. The critical path is 12 LUT evaluations, short enough to expect to
implement in a single cycle.

The MDS Galois matrix multiplication also maps very well. [3] shows how the multipli-
cation by 0x5b can be implemented in 8 LUTs, and the multiplication by OXEF requires
9 LUTs. It requires a further 8 LUTs to add each output together. The net result is that
the matrix requires 135 LUTs to compute, with a critical path of 3 LUTs, allowing it to be
combined with the PHT.

4.6.1 Twofish single round

A single round would require 846 LUTs for the two h functions, another 64 LUTs for the
PHT, 64 LUTs to store the subkeys, 64 LUTs for the subkey addition, and 64 for the subkey
XORing. A final 256 LUTs are required for the whitening steps, resulting in roughly 1360
LUTs for the entire pipeline.

A reasonable expectation would be for this round to take 3 cycles, one for the S-boxes,
one for the MDS and PHT, and one for the key addition and XOR". Such a pipeline would
take 48 cycles to encrypt a single block, producing a block every 16 cycles.

4.6.2 Twofish folded

Like RC6, the symmetries in Twofish allow the pipeline to be folded in half. This would
require an additional cycle to do the PHT, because the MDS would need to be split out,
as well as additional logic for the PHT operation. This would require 423 LUTs for the A
function, 64 LUTs for the PHT'?, 64 LUTs to store the subkeys, and 64 LUTs to perform

11 Carries on FPGAs tend to propagate faster then the sum, but if it is necessary to develop a 3 stage
pipeline, it might be best to place the pipeline in the middle of the carry of the PHT and key addition, so
that the first cycle does the low 16 bits of the PHT and the key addition, and the second cycle does the
high bits and the XOR operation

12for a 32 bit adder and the additional logic to shift or not and to select the proper input

Algorithm Implementation Latency Bandwidth Size Size
(cycles) | (subkey sets/cycle) | (4-LUTs) | (BlockRAM)
New microcoded
MARS datapath 270 1/270 300 8
Existing datpath
modified 270 1/270 50 0
RC6 Specialized datapath 264 1/264 290 0
New specialized
Rijndael datapath 36 1/36 128 2
Shared S-boxes 36 1/36 160 0
Serpent 8 slow, 8 round 32 1/4 2060 0
2 slow, 2 round 32 1/16 1500 0
Twofish Shared H-func 20 1/20 512 0
Separate H-func 4 1/4 1260 0

Figure 2: Comparative performance and cost of subkey generation

the feistel network XOR and to rotate the output if necessary. 128 LUTs would still be
needed for each of the whitening steps. It would also require an additional cycle for the
PHT, in order to delay the proper element.

Such a pipeline would require roughly 870 LUTs and would require 4 cycles to complete
each block, increasing the latency to 64 cycles, and reducing the bandwidth to one block
every 32 cycles.

5 Subkey generation

Although subkey generation is not always on the critical path, it is may be necessary to
do the subkey expansion within the device, often as a microcoded datapath or customized
logic. Some applications, like point-of-sale terminals, may rarely or ever need to change
their keys, in which case subkey generation isn’t a priority and can be performed external
to the device.

Applications such as an encrypting packet router or disk controller may require changing
subkeys on a packet-by-packet or block-by-block basis. In such applications, the key setup
time and parallelism may prove to be the critical factor. An important consideration for
hardware implementations is how agile the key scheduling is. Being able to pipeline subkey
generation at the same rate as encryption allows subkeys to be generated concurrent to
encryption.

Note, though, that Rijndael and Serpent allow concurrent keyscheduling only in the
encryption direction, not for decryption. These ciphers require some additional buffering
for the expanded subkeys for decryption, which would make decryption latency for a changed
key to be different than the encryption latency for a changed key.

The i1deal case, which only occurs in Twofish, i1s subkeys which can be generated indepen-
dently. This allows encryption and decryption subkeys to be generated on the fly regardless
of whether the data is being encrypted or decrypted. This is a great advantage for devices
which need to encrypt and decrypt a large number of differently keyed blocks.

In general, the datapath will only be described for a keysize of 128 bytes, if there is a
significant difference in the pipeline structure for different key sizes.

Both MARS and RC6 have considerably slower subkey generation when compared with
the other candidates. Neither can be effectively pipelined or accelerated, and any attempt
to simultaneously produce multiple subkeys for different initial keys requires duplication of
the subkey-creating hardware.

Rijndael’s subkey generation is considerably shorter and takes up a small amount of area.

Although it can not be pipelined, it is small enough to duplicate if subkeys are changed often.
Creating the Serpent subkeys, on the other hand, favor a heavily pipelined design due to
the comparatively high cost of all the S-boxes.

Twofish’s key generation can share hardware with the encryption pipeline, if a low cost
implementation is required. Alternatively, it may contain it’s own copy of the S-box logic and
generate the subkeys concurrently with encryption, essentially eliminating all the latency
involved in subkey creation.

5.1 MARS

The MARS subkey generation is best implemented in a custom microcoded datapath. If
such a datapath is used for encryption, the incremental cost of subkey generation is mi-
nor, just a fair amount of expanded code with all indexes recalculated. The only addition
would be a logical structure to compute M,, requiring some 100 LUTs to accomplish. If a
microcoded datapath is not used, essentially the full microcoded datapath from the encryp-
tion description (sans multiplier), would be necessary, roughly 300 LUTs and 8 BlockRAMs,
and roughly 270 cycles to generate the subkeys.

5.2 RC6

The RC6 subkey generation is probably best implemented with a custom datapath, using 2
BlockRAMs to store the subkeys during computation. Since the number of user key blocks
is rather small, 32 LUTs used as a small RAM is sufficient. 2, 32 bit registers can store A
and B, with 32 LUTs for a dedicated adder to always compute A+ B. The only additional
logic to calculate A i1s 2 adders, one to generate the initial value of the S array, and the
second to add the current value of the S array to A + B, 64 LUTs in all. For updating B,
this requires 160 LUTs for the rotation and 32 LUTs for another adder. Thus, the total
datapath would occupy 290 LUTs.

The control logic for this structure consists only of a couple of counters and some simple
state for the state machine, so it should not require significant resources.

It should be reasonable to update A in 1 cycle as it only requires 3 additions or two
additions plus a memory lookup, and a constant rotation. Similarly, B should be computable
in a single cycle as well. Thus, for 20 round RC6, this datapath requires 132 executions, for
264 cycles to generate the subkeys.

5.3 Rijndael

Rijndael’s subkey generation is very compact. It can only produce four bytes per cycle as
each word is dependent on the previous word, so an implementation which changes keys
often would be still dominated by the latency of subkey generation.

Subkey generation requires 4 copies of the S-boxes in 2 BlockRAMs (either shared with
the encryption pipeline or independent), enough buffering for 128b with a 128b key, 32
LUTs for the Rcon table, and 32 LUTs for the various XORs and selections. Since the
buffering is dominant, the total would probably require 128 LUTs, as the flip flops end up
dominating the cost. Each subkey word could be generated in a single cycle, requiring 38
cycles to generate all the subkeys.

5.4 Serpent

Just as the best Serpent implementation is an 8 round, 8 slow pipeline, the same holds
for the subkey generation. Since the structure is very similar to the round itself, the same
techniques can be used. It requires 64 LUTs to calculate the XORs for each of the 4 subkeys
generated for each round, another 128 LUTs for the sbox substitution, and 32 LUTs for
calculating the index, for 224 LUTs for each round. At 8 rounds, this comes to 1800 LUTs
plus another 260 LUTs for the MUXes at the end of the pipeline, for a total of 2060 LUTs.

A more compact, 2 round design would still require 128 LUTs for the XORs, 1024 LUTs
for the S-boxes with the results muxed by tristate buffers, 64 LUTs for the indexes, and
256 LUTs for the MUXes at the start of the pipeline. This would total to roughly 1500
LUTs, while still only requiring 32 cycles to generate a full set of subkeys. Although it
might be possible to reuse the S-boxes from the encryption pipeline, the additional muxing
would probably swamp most of the savings achieved by this reuse unless only a single-round
serpent implementatino is used.

5.5 Twofish

The key generation in Twofish occurs in two parts, the first generating the two keys for
the S-boxes and the second generating the round keys. The S-Box subkeys require a
constant GF(2®) matrix multiplication. Using specialization, assuming an average of 8
LUTs/constant, 256 LUTs are required to generate the subterms, and another 96 LUTs are
required to perform the XORs to generate the sbox subkeys.

For implementations where subkey generation is not in the critical path one can use the
S-boxes from the encryption pipeline. The modifications to the existing pipeline would add
64 LUTs to mux the inputs into the S-boxes, 64 LUTs to mux the S-box subkeys between
the encryption subkeys and the input keys, and another 32 LUTs to modify the PHT, for a
total of 160 LUTs, a very small addition to the pipeline. This approach would require a total
of 512 LUTs of datapath to generate the subkeys and 20 cycles to generate the complete set
of subkeys.

A separate round subkey datapath could be implemented, requiring an additional copy
of the 2 H-functions and a PHT (910 LUTs). This would require a total area of 1260 LUTs.
This is comparable to the cost of the encryption pipeline, but has the advantage that subkeys
can be generated on the fly concurrently with encryption, except for those subkeys required
for the input and output whitening. This allows a hardware implementation of twofish to
operate at almost maximum bandwidth while able to change subkeys on a block by block
basis, and to shift between encryption and decryption at will. This has the effect of reducing
the key setup time to only the 4 cycles needed to generate the input and output whitening
subkeys.

6 Other implementations

Twofish and Serpent have hardware implementations[3] [5] reported in the literature which
can be used to help calibrate the quality of our estimates. Both implementations used HDL
synthesis, which hurts performance but does not significantly affect the area required.

The Twofish implementation in [3] requires roughly 900 Xilinx 4000 CLBs, or 1800 LUTs,
with the hardware for the round itself requiring roughly 1400 LUTs. A pipelined version used
7 cycles/round, running at 35 MHz. Three considerations reduced their performance: the
implementation overhead of VHDL, routing congestion and tools, and an older generation
FPGA.

The area numbers for this implementation are very close to the estimates for Twofish, a
very good sign. Also, the performance degradation present in the HDL version is expected.
HDL synthesis'? techniques tend to produce significantly lower performing designs'*, and
the Xilinx 4000 series is also significantly slower then the current generation of Xilinx FP-

GAs.

13 This is where the logic is described in a High level Description Language and then compiled to form the
actual circuitry of the implementation, as opposed to a lower level approach of a had specified and hand
placed datapath which is assumed in the estimates.

14 There are two factors involved: HDL synthesis on a design like Twofish is usually constructed without
detailed placements for the individual modules of the datapath, and the place-and-route tools are not
intelligent about placing or reconstructing datapaths in designs.

10

The Serpent implementation [5] is unfortunately harder to use as a calibration. It re-
quired 18,000 LUTs at 37 MHz for a fully unrolled, pipelined (1 stage/round) version, 15,000
LUTs at 13 MHz for an unpipelined, 8 round version, and 11,000 LUTs at 15 MHz for a sin-
gle round when implemented in a Virtex 1000. The performance numbers are very good, and
although some improvement may be achieved by a manually layed-out design, the nature of
serpent doesn’t have heavy datapath regularity to exploit.

The single and eight round versions can not be used to calibrate the area estimates, as the
design used flipflops and MUXes for subkey storage, instead of the luts-as-memory ability
present in the Virtex. Furthermore, the single round implementation used MUXes instead
of the internal tristate lines to mux the S-boxes, a serious inefficiency in the implementation.

The best mechanism for attempting to calibrate area is to quadruple the area estimate
for an eight round version of serpent, as a first approximation. With 15,000 LUTs for the es-
timated area, and 18,000 LUTs for the HDL implementation, the comparison is pretty close.
The additional area for the HDL version undoubtedly includes the logic for setting the sub-
keys and performing I/O, while the estimate in this paper only considers the cryptographic
core.

7 Conclusions and Lessons Learned

Both Rijndael and Twofish are very amenable to hardware implementations. Rijndael is the
fastest, with a great degree of parallelism and very quick operations, but area requirements
increase substantially if encryption and decryption is required in the same device. Although
Twofish is somewhat slower, there is an excellent degree of flexibility in subkey generation
and in area/performance tradeoffs.

The numerous, large S-boxes are one of the features which greatly cripple MARS hard-
ware implementations. Having to implement 9 large 32bit S-boxes to create a single C-slow
pipeline impose a significant cost on any implementation. Also, the heterogeneous round
types cause a significant area penalty when compared to other implementations. The use
of both S-boxes and multiplication further compounds the cost, requiring both considerable
storage and considerable logic to implement.

The subkey generation for both MARS and RC6 have serial steps which require all
subkeys to be modified several times. This causes subkey generation to be very slow in
hardware, a significant defect when dealing with applications which require rapidly changing
subkeys.

Serpent ends up being surprisingly awkward, mostly due to the large number of S-boxes
required. Tt takes 1024 LUTSs just to store all the S-boxes. Although the performance is ex-
cellent, the bandwidth quickly drops for smaller implementations and the area/performance
suffers greatly.

Similarly, two operations which are cheap software, multiplication and rotation, end up
being comparatively expensive in hardware. A multiplier occupies much more logic then an
addition in hardware, and large multiplier are much costlier'®. Similarly, variable rotations
are much more expensive in hardware when compared to constant rotations, XORs, or
additions.

Independently generated subkeys such as those in Twofish offer a great benefit for some
applications, as this allows almost complete hiding of the subkey generation time. This
property allows a hardware implementation to almost completely overlap subkey generation
with encryption and can remove the need for any expanded subkey storage.

15 As an example, a 32232 modulo 2°2 multiplier is four times the area of a 16216 modulo 2'¢ multiplier.

11

8

Acknowledgments

Many thanks to David Wagner for explaining the design decisions and operations of various
aspects of the ciphers and to Eylon Caspi for his capable editing.

References

(1]

2]

(3]

[4]

[5]

(8]

[9]

Anderson, Biham, and Knudsen, “Serpent: A Proposal for the Advanced Encryption
Standard”, http://csrc.nist.gov/encryption/aes/round2/AESAlgs/Serpent/Serpent.pdf

Burnwick et al, “The MARS encryption algorithm”,
hittp://csre.nist.gov/encryption/aes/round2/AESAlgs/MARS/mars-int. pdf

Chodowiec and Gaj, “Implementation of the Twofish Cypher Using FPGA Devices”,

George Mason University Techinical Report, http://www. counterpane.com/twofish-
fpga.himl
Daemen and Rijmen, “AES Proposal: Rijndael”|

http://csre.nist.gov/encryption/aes/round2/AESAlgs/Rijndael/Rijndael. pdf

Elbirt and Parr, “An FPGA Implementation and Performance Evaluation of the Serpent
Block Ciphen”, in ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA), February, 2000.

Rivest, Robshaw, Sidney, and Yin, “The RC6 Block Cypher”,
hitip://csre.nist.gov/encrypiion/aes/round2/AESAlgs/RC6 /cipher.pdf

Schneier et al, “Twofish: A 128-Bit Block Cypher”,
http://csre.nist.gov/encryption/aes/round2/A ESAlgs/ Twofish/Twofish. pdf

Triscend Inc, “Triscend Eb5 Configurable System-on-Chip Family”,
hittp://www.triscend.com/products/dse5csoc. pdf

Xilinx Inc, “Virtex 2.5V Field Programmable Gate Arrays”,
http://www.zilinz.com/partinfo/ds003. pdf

12

Comparison of the hardwar e performance of the AES candidates using reconfigurable hardware

Kris Ggj and Pawel Chodowiec
George Mason University
kgaj @gmu.edu, pchodowi @gmu.edu

Abstract

The results of implementations of al five AES finalists using Xilinx Field Programmable Gate Arrays are presented and analyzed.
Performance of four aternative hardware architectures is discussed and compared. The AES candidates are divided into three classes
depending on their hardware performance characteristics. Recommendation regarding the optimum choice of the algorithms for AES is
provided.

1. Introduction

Hardware implementations of cryptography will thrive in the new century because of the growing
requirements for high-speed, high-volume secure communications combined with physical security. In the
presence of no major breakthroughs in cryptanalysis of the AES candidates, and relatively inconclusive results
of their software performance evaluation [NBD+99, SKW+99], the comparison of the hardware performance of
the AES agorithms may provide a major indicator for afinal decision regarding the new standard.

Very few results regarding hardware implementations of the AES candidates have been published so far.
Original documentation provided by designers of the submitted algorithms contains typically only rough
estimates of the hardware performance [BCD+98, RRS+98, SKW+98]. Additionally, these estimates are very
difficult to compare among each other because of large differences in assumptions regarding the technology, and
because of different architecture choices. The results of actual implementations of individual algorithms,
published recently by independent researchers [EP99, RH99], provide only a very fragmentary knowledge, not
suitable for reliable comparison.

This situation will be certainly remedied by the publication of the NSA findings regarding hardware
performance of the AES candidates. Nevertheless, the NSA evaluation plan [NSA98] targets only
implementations using semi-custom Application Specific Integrated Circuits (ASICs), providing no data
regarding other technologies. In this article, we focus on comparing AES candidates using an alternative
hardware technology based on Field Progranmable Gate Arrays (FPGAS). This technology, referred to as
reconfigurable hardware, offers many advantages for future vendors and users of cryptographic equipment. It
assures a short time to the market, high flexibility (including a capability for frequent modifications of
hardware), low development costs, and low cost of the final product - the result of the algorithm agility -
capability to use the same integrated circuit with time sharing for the execution of various secret-key and public-
key algorithms. Our comparison supplements the NSA effort by covering the second primary way of
implementing cryptographic algorithms in hardware.

2. Reconfigurable hardware
2.1 Operation and internal structure of an FPGA device

Field Programmable Gate Array (FPGA) is an integrated circuit that can be bought off the shelf and
reconfigured by designers themselves. With each reconfiguration, which takes only a fraction of a second, an
integrated circuit can perform a completely different function. FPGA consists of thousands of universal building
blocks, known as Configurable Logic Blocks (CLBs), connected using programmable interconnects, as shown in
Fig. 1a. Reconfiguration is able to change a function of each CLB and connections among them, leading to a
functionally new digita circuit.

From several FPGA families available on the market, we have chosen for implementing AES candidates
two families from Xilinx, Inc.: high performance Virtex family, and a low-cost XC4000 family. Each family
consists of several FPGA devices, manufactured in the same technology, covering certain range of maximum
circuit sizes.

Programmalde I LF|[TF =F IF TFIF IF I l‘\

Indercomnect
[0 Blocks (TCHA=)
Conligurable
Logic Focks (CT.Hs)
b
omi-bel 7 II‘::\":'I e Eat
I . s Al i
H register it
5 gomybinational . 4 rogisbar
B lagic oni=hil oae-bil
regasler . EAM regisler

Iax1

Fig. 1 FPGA device. @) Genera structure and main components. b) Internal structure of a CLB configured in the logic
mode. ¢) Internal structure of a CLB configured in the memory mode.

A smplified internal structure of a CLB in the XC4000 family, and a CLB dlice (1/2 of a CLB) in the Virtex
family isshown in Figs. 1bc. In the logic mode (Fig. 1b), each of these elementary units contains a small block
of combinational logic, implemented using programmable look-up tables, and two one-bit registers. In the
memory mode, combinational logic is replaced by two small memories. A CLB in the XC4000 family of FPGA
devices and a CLB dicein Virtex are functionally almost identical. Therefore, we will use a number of these
elementary units, necessary to build a given circuit, as a measure of the circuit area and cost.

2.2 Advantages of using reconfigurable hardware for comparison of the AES candidates

For implementing cryptography in hardware, FPGASs provide the only major alternative to custom and semi-
custom Application Specific Integrated Circuits (ASICs), integrated circuits that must be designed all the way
from the behavioral description to the physical layout, and sent for an expensive and time-consuming
fabrication. The comparison of the AES candidates based on FPGA devices has the following advantages over
the comparison based on ASICs:

Shorter design cycle leading to fully functioning device prototypes.

Lower cost of the computer-aided design tools, verification, and testing.

Potential for fast, low-cost multiple reprogramming and experimental testing of a large number of various

architectures and revised versions of the same architecture.

Higher accuracy of comparison: in the absence of the physical design and fabrication, ASIC designs are

compared based on inaccurate pre-layout simulations [NSA98]; FPGA designs are compared based on very

accurate post-layout simulations and experimental testing.

3. Alternative ar chitectures
3.1 Basic organization of a block cipher implementation

The basic organization of the hardware implementation of a symmetric block cipher is shown in Fig. 2. All
five AES candidates investigated in this paper can be implemented using this organization. The organization
includes the following units:

a. Encryption/decryption unit, used to encipher and decipher input blocks of data.

b. Key scheduling unit, used to compute a set of internal cipher keys based on a single external key.

c. Memory of internal keys, used to store internal keys computed by the key scheduling unit, or loaded to the
integrated circuit through the input interface.

d. Input interface, used to load blocks of input data and internal keys to the circuit, and to store input blocks
awaiting encryption/decryption.

comtrol

l I input’key

Control input interface

Lk l
key

scheduling |
encryplion/decryption :

I l memaory of
internal keys

output mterface

output
Fig. 2 Block diagram of the hardware implementation of a symmetric-block cipher.

e. Output interface, used to temporarily store output from the encryption/decryption unit and send it to the
externa memory.
f. Control unit, used to generate control signalsfor al other units.

3.2 Feedback vs. non-feedback operating modes

Today's symmetric block ciphers are used in several operating modes. From the point of view of hardware

implementations, these modes can be divided into two major categories:
a. Non-feedback modes, such as Electronic Code Book mode (ECB), and counter mode.
b. Feedback modes, such as Cipher Block Chaining mode (CBC), Cipher Feedback Mode (CFB), and Output

Feedback Mode (OFB).

In the non-feedback modes, encryption of each subsequent block of data can be performed independently from
processing other blocks. In particular, all blocks can be encrypted in parallel. In the feedback modes, it is not
possible to start encrypting the next block of data until encryption of the previous block is completed. As a
result, all blocks must be encrypted sequentially, with no capability for parallel processing.

According to current security standards, the encryption of data is performed primarily using feedback
modes, such as CBC and CFB. Non-feedback modes, such as ECB, are used primarily to encrypt session keys
during key distribution. As a result, using current standards does not permit to fully utilize the performance
advantage of the hardware implementations of secret key cryptosystems, based on parallel processing of
multiple blocks of data.

3.3 Alternative architectures for the encryption/decryption unit

a. Basic architecture

The basic hardware architecture used to implement an encryption unit of a typical secret-key cipher is
shown in Fig. 3a. One round of the cipher is implemented as a combinational logic, and supplemented with a
single register and a multiplexer. In the first clock cycle, input block of data is fed to the circuit through the
multiplexer, and stored in the register. In each subsequent clock cycle, one round of the cipher is evaluated, the
result is fed back to the circuit through the multiplexer, and stored in the register. The number of clock cycles
necessary to encrypt asingle block of datais equal to the number of cipher rounds, #rounds.

We define the speed of the cipher implementation as the number of bits of data encrypted in a unit of time.
Speed calculated this way is often referred to as the circuit throughput. The speed of the basic architecture,
speedy,, isgiven by

speedy, = 128/ #rounds xclock_period . D

hi

muliiplexer muliiplexer

registar registar

one round | coimbnatienal k rounds ¥ ol |.

combinationnl
fogic

logic

L] l

mudiplexer

o) l

mudiplexer

register | register |

prpeline Sxge prpeln flage 1 = rodmed |
Tegisterd rezisterd
e foand pupehse sape 1 & Foamds ppedoe stage 2 = pound 2

pipeline sinae &

Fig. 3 Four aternative architectures for implementation of an encryption/decryption unit of a block cipher: a) basic
architecture, b) architecture with the k-round loop unrolling, c) architecture with the k-stage inner-round pipelining, d)
architecture with the k-stage outer-round pipelining.

The basic architecture combines a good speed with the relatively modest area requirements. However there exist
several alternative architectures that permit to improve either one or both of these performance measures.

b. Loop unrolling

Architecture with loop unrolling is shown in Fig. 3b. The only difference compared to the basic architecture
is that the combinational part of the circuit implements k rounds of the cipher, instead of a single round. The
maximum value of k is equal to the number of cipher rounds. The number of clock cycles necessary to encrypt a
single block of data decreases by afactor of k. At the same time the minimum clock period increases by a factor
dlightly smaller than k, leading to an overal relatively small increase in the cipher speed, given by

speed,/speedsa = (1 + t)/(1+t/K), 2

wheret istheratio of the sum of the multiplexer delay, the register delay and the register setup time to the delay
of a single cipher round. This increase in speed is obtained at the cost of the circuit area. Because the
combinational part of the circuit congtitutes the majority of the circuit area, the tota area of the
encryption/decryption unit increases almost proportionally to the number of unrolled rounds, k. Additionally, the
number of internal keys used in a single clock cycle increases by a factor of k, which in FPGA implementations
typically implies the ailmost proportiona growth in the number of CLBs used to store internal keys.

In summary, loop unrolling enables increasing the circuit speed in both feedback and non-feedback
operating modes. Nevertheless thisincrease is relatively small, and incurs a large area penalty.

c. Inner-round pipelining

Pipelining is a general method of increasing the amount of data processed by a digital circuit in a unit of
time. The idea is to introduce evenly spaced extra registers in the middle of the combinational circuit, in such a
way that severa blocks of data can be processed by the circuit at the same time. Parts of the combinational logic
divided by adjacent registers are called pipeline stages (see Fig. 3c¢). In each clock cycle the partially processed
data block moves to the next pipeline stage. Its place is taken by the subsequent data block. This way, a
pipelined circuit can encrypt simultaneously as many blocks of data, as the number of pipeline stagesit contains.

4

clock

ey 2 3 4 5 i 7 §
Bl [m| | B3| [B4 [B1]| [B2 B3 | [B4
Bl | | B2 | [B3| [BPe| [B1 B2 | [B3
[E1 | | B2 [B3 | | B4 Bl | B2
Bl B2 B3 B4 | [B
first round for B second round for BL
- - - *
A=t] D-1p2 N-1)43 AM aM+1 AN+2 4M-+3 41+4
BL | [B2 | [B3 B4 | | Bs B6 B7 | [B8 |
B+ | | Bl | | B2 B | ¥ B3 B6 | | BT |
B | | B+ | | BI B2 | B3 Bi Bs | [B |
_H.". %] 34 _H_]_ __FI-." ikl B4 [B3 |
last round for Bl first round for B35
- = 4 *

Fig. 4 Operation of the architecture with 4-stage inner-round pipelining for an N-round cipher.

Fl.P4 Fa.I% S bl

[N | CRCE

Fig. 5 Timing of input and output blocks in a) basic architecture, b) architecture with a 4-stage inner-round pipelining.

The flow of data through the pipeline during encryption is shown in Fig. 4. The number of pipeline stagesin
this example is four. During the first four clock cycles four subsequent blocks of data enter the pipeline. In the
subsequent clock cycles, these blocks circulate in the pipeline. Each four clock cycles correspond to a single
cipher round. In the cycle number 4*frounds+1, the first block, B1, leaves the pipeline, and the fifth block, B5,
is introduced to the empty pipeline stage. In the following three clock cycles, blocks B2, B3, and B4, leave the
pipeline, substituted by blocks B6, B7, and B8. The timing diagram of the input and output of the circuit is
shown in Fig. 5b. Speed of the circuit, expressed as the number of bits processed by the circuit in a unit of time
isgiven by

speed = 128/ #rounds xreduced_clock_period 3
where reduced_clock_period isaminimum clock period after pipelining.

The dependence between the cipher speed-up resulting from the inner-round pipelining and the number of
evenly spaced pipeline stages is shown in Fig. 6. There exists a maximum number of pipeline stages that still
improves the circuit throughput. Adding additional registers will not affect the throughput. The maximum
number of pipeline stages is determined by the delay of the largest indivisible combinational portion of the
circuit. For majority of ciphers it is difficult to divide the cipher round into combinational stages with equal
delays (especialy, when the circuit is described in a high-level hardware description language, such as VHDL),

5

Dy I
speed with pipeliningspeed without pipelining 120 (K]
il g e
.
Sehox || S-box

- * (IS 1’
[pipelim-: sLages —
MAK
Fig. 6 Speed of the architecture with Fig. 7 Resource sharing of an S-box. @) basic operation of
k-round inner-round pipelining as a function two parallel S-boxes, b) operation with resource sharing.
of the number of evenly spaced pipeline

stages.

which further limits the circuit speed-up. Area of the circuit with inner-round pipelining increases only by a
small percentage (area of a single 128-bit register) with each additional pipeline stage. Thisis especially true for
FPGA circuits, in which CLBs used to implement combinational logic often contain registers not utilized in the
non-pipelined implementation.

d. Outer-round pipelining

Outer-round pipelining is created by loop unrolling followed by introducing extra registers between parts of
the combinational logic corresponding to each cipher round, as shown in Fig. 3d. The number of unrolled loops
kistypically adivisor of the total number of cipher rounds, #rounds.

Area of the encryption unit with outer-round pipelining is directly proportional to the number of pipeine
stages k. In the non-feedback cipher modes, such as ECB, the speed (throughput) of the cipher increases
proportionally to the number of pipeline stages, k. Therefore, the outer-round pipelining enables to directly trade
circuit speed with circuit area. In the feedback cipher modes, the speed of the cipher remains independent of the
number of outer pipeline stages, and therefore, thiskind of pipelining is not recommended for these modes.

e. Resource sharing

For some ciphers, it is possible to further decrease circuit area by time sharing of certain resources (e.g.,
function h in Twofish, 4x4 S-boxes in Serpent, 8x32 S-boxes SO, Sl in the mixing transformation of Mars,
multiplication units in RC6). This is accomplished by using the same functional unit to process two (or more)
parts of the data block in different clock cycles, as shown in Fig. 7b. In Fig. 7a, two parts of the data block, DO
and D1, are processed in parallel, using two independent S-boxes. In Fig. 7b, a single S-box is used to process
two parts of the data block sequentialy, during two subsequent clock cycles.

The use of resource sharing in rea life implementations is expected to be limited, because
- Gaininthecircuit areais dways smaller than the loss in the circuit speed.
- The amount of area used by a basic implementation of a symmetric cipher istypically already quite small.

3.4. Choice of the figure of merit

The choice of a single figure of merit is difficult, because the optimization criteria may vary depending on
the application. In our comparison, we took into account three basic figures of merit: maximum speed
(throughput), minimum area, and the maximum speed/area rétio.

Optimization for maximum speed will be done in applications where communication requirements force the
use of a very high speed encryption, and/or the cost of the cryptographic hardware constitutes only a small
portion of the entire system. Examples of such applications include ATM and ISDN switches, Virtual Private

a) & speed . b} & speed
- basic architeclere

outer-round pipelming - boep unalling

]

A
- & - inmer-rotmd pipchioang
k=3 ™ .
-

*] hasic achitechuns = pamter-roiirel pape g
=4 i F=4 A - loop uniling - reaires shanng
I . # - immer-round papelining
inner-round F"-F'Jl'-““'-L—' L] & - ouper-roand ppclindsg
=i =3 ® - rpeourcs shanmg
=1 - ® o3 loop-unralling loop-tunmalling
& & & LI
bazie architeciure A - E=3 k=4 k=5 basic architecture & =2 = =3 it k=5
] | - - L L]
b, outer-round pipelining
' . * =
. . mner-round pipehmng
| mesounce sharing ! | Tesoune sharnng 3
ared area

Fig. 8 Hardware performance of various alternative architectures in a) non-feedback cipher modes, such as ECB and
counter mode, b) feedback cipher modes, such as CBC, CFB, and OFB.

Network routers and firewalls, WWW and database servers. In such applications, it may be justified to trade the
cost of the cryptographic hardware (proportional to the circuit area) for greater speed.

In the second class of applications, the designer's goal is to obtain the maximum speed, assuming a given
[imit on the circuit area (cost). In such situations, the more appropriate figure of merit is the speed/area ratio.
This figure of merit is particularly appropriate for non-feedback cipher modes, which enable one to directly
trade circuit area for speed by using the outer-round pipelining, as shown in Fig. 8a. The examples of cost
critical applications of cryptography include pagers, digital video recorders, and PCMCIA cards.

Applications that require optimization for minimum area include smart cards, embedded systems, and
cellular phones. As the basic architecture may be still too big for such applications, they may enforce resource
sharing. Taking into account the size and power limitations, these applications will be typically implemented
using custom ASICs, not FPGASs.

3.5 Comparison of various architectures

Dependencies between the speed and the area of the encryption/decryption unit of a block cipher, for
architectures discussed in section 3.3, are shown in Fig. 8.

a. Non-feedback modes

For non-feedback modes, the best speed/area ratio can be obtained by using inner-round pipelining with the
maximum number of pipeline stages that still increases circuit clock frequency, as shown in Fig. 8a The largest
possible speed can be obtained by combining inner-round pipelining with outer-round pipelining. The only limit
on the circuit speed is imposed in this case by the maximum circuit area (cost) and/or the maximum number of
the outer-round pipeline stages (equa to the number of the cipher rounds). The smallest possible area can be
obtained using the basic architecture with resource sharing.

b. Feedback-modes

For feedback modes, the basic architecture offers the best value of the ratio speed/area, as shown in Fig. 8b.
Larger speed can only be aobtained using loop unrolling, at the cost of a very significant increase in the circuit
area (cost). Smaller area can only be obtained using resource sharing, at the cost of the significant reduction in
the circuit speed.

Outer-round pipelining is inefficient in these modes, as it does not increase circuit speed, and significantly
increases circuit area. Inner-round pipelining decreases speed, and increases circuit area. As a result, neither
type of pipelining should be used in these operating modes.

4. Assumptions
4.1 Primary assumptions

The following tentative assumptions have been made in order to smplify the task of comparing AES
candidates:
a. Key size 128 hits.
Our implementations are intended to support only one key size, 128 bits. Other key sizes required by AES (192
and 256 hits), or supported by a particular agorithm will be added in the future.
b. No key scheduling unit.
Our implementations do not support the on-chip generation of internal keys from a single external key. Instead,
our implementations include a memory of internal keys loaded with the keys generated externally, and the
circuitry necessary to distribute these keys from the memory to the encryption/decryption unit.
c. Block size 128 bits.
Only one input/output block size, 128 bits, has been considered, even if the given AES candidate supports other
block sizes.
d. Basic architecture
The encryption part of al AES candidates has been implemented using basic architecture shown in Fig. 3a. This
architecture has been chosen for the following reasons:
* As shown in Fig. 8b, the basic architecture assures the maximum speed/area ratio for feedback operating
modes (CBC, CFB), now commonly used for bulk data encryption. It also guarantees near optimum speed, and
near optimum area for these operating modes.
* The basic architecture is relatively easy to implement in a similar way for all AES candidates, which supports
fair comparison. For architectures with inner-round pipelining, it is relatively difficult to determine and
implement the maximum number of pipeline stages that still increases circuit speed and speed/arearatio.
* The implementations of the basic architecture exemplify larger differences among five AES agorithms
compared to the architectures with inner-round pipelining. Inner-round pipelining permits decreasing the
differences in speed among various ciphers because ciphers with longer critical path (lower speed) may be sped
up by alarger factor by introducing proportionally more pipeline stages.
* Based on the performance measures for basic architecture, it is possible to derive analytically approximate
formulas for parameters of more complex architectures, including architectures with outer-round pipelining
(near proportiona scaling of both area and speed), loop-unrolling (see formula (2)), and inner-round pipelining
(see formula (3) and Fig. 6). Nevertheless, these formulas should be treated only as a first approximation, and
the more detailed comparison requires the actual implementation of all ciphers using aternative architectures.
Only such implementations may take into account the exact structure of al ciphers, limitations imposed by the
FPGA architecture and the design entry method (e.g., VHDL description), and the optimization capabilities of
the FPGA computer-aided design tools.
e. Resource sharing between the encryption and decryption part

In order to minimize circuit area, it was assumed that the encryption and decryption parts share as many
resources as possible by the given cipher type. The effort was made to maximally decrease the effect of resource
sharing on the speed of encryption and decryption.

4.2 Deviations from the basic architecture

Three ciphers, Twofish, RC6, and Rijndael, have been implemented using exactly the basic architecture
shown in Fig. 3a. This was possible because all rounds of these ciphers perform exactly the same operation. For
the remaining two ciphers, Serpent and Mars, this condition is not fulfilled, and as a result, small deviations
from the basic architecture appeared to be necessary.

Serpent consists of 8 different rounds repeated 4 times. Therefore, it is advantageous to treat 8 officia
cipher rounds as a single implementation round, and assume that the cipher has 4 rounds. This way, 8 official
cipher rounds are implemented in the basic architecture as a combinationa logic. This implementation
guarantees the maximum speed/area ratio typical for the basic architecture.

In Mars, there exist four different kinds of rounds, each repeated
8 times: forward mixing, forward keyed transformation, backwards
keyed transformation, and backwards mixing. It is possible to
implement forward and backwards mixing using the same functional
unit; the same holds for the forward and backwards keyed
transformation. The structure of the mixing transformation and the
keyed transformation are significantly different, and as a result they
must be implemented using separate units, as shown in Fig. 9. Both
of these units have an internal structure that corresponds to the basic
st architecture (multiplexer + register + combinational logic).
Additionally, both units share the look-up table implementing two
8x32 S-boxes.

BRI

forward (backwards forward / backwards
nuxing keved translormation

Fig. 9 Deviation from the basic architecture
in Mars.

5. Results
5.1 Results for the Virtex family

The results of implementing AES candidates, according to the assumptions summarized in section 4, using
the largest currently available Xilinx Virtex device, XCV1000BG560-6, are summarized in Fig. 10. For
comparison, the results of implementing the current NIST standard, Triple DES, are also provided It should be
stressed that all results come either from simulation or from reports generated by Xilinx tools, and have not as
yet been confirmed experimentally. The details of all implementations, including the detailed block diagrams,
and the description of simulation and test experiments will be provided in the technical report available at the
AES conference [CGO00]. Part of this report, describing Twofish, is already available on the web [CG99].

Implementations of al ciphers take from 9% (for Twofish) to 38% (for Serpent) of the total number of
12288 CLB dlices available in the Virtex device used in our designs. It means that less expensive Virtex devices
could be used for al implementations. Additionally, the key scheduling unit can be easily implemented within
the same device as the encryption/decryption unit.

5.2 Results for the XC4000 family

For the low-cost, medium-size family of Xilinx FPGA devices, XC4000, only two ciphers, Twofish and
RC6, were able to fit within the largest device from this family. The relative performance of these ciphers is
similar to the relative performance in Virtex implementations. It is interesting to notice that for the two different
FPGA devices from this family, the smaller one guarantees the higher speed.

Cipher Speed [Mbit/g] Area[CLBS] Speed/Area [Kkbit/sCL B]
4028/4036 4085 4028/4036 4085 4028/4036 4085
Twofish 90.9 89.2 907 907 100.2 98.3
RC6 45.9 43.1 1222 1222 37.6 35.3

Table |. Results of implementing Twofish and RC6 using the largest available FPGA device from the XC4000XL family,
XC4085XL, and the largest device fitting the implementation of the respective cipher, i.e., XC4028XL for Twofish, and
XC4036XL for RC6.

5.3 Resour ce sharing between encryption and decryption

The amount of resource sharing between encryption and decryption is considerably different for various
AES candidates, depending on the type of the cipher. Resource sharing is close to 100% for Feistel ciphers and
modified Feistel ciphers, and close to zero for S-P networks. The level of resource sharing can be described by
the amount and type of the extra logic that must be added to the circuit implementing encryption, so that the
modified circuit can perform both encryption and decryption, as shown in Table 1.

Speed [Mbit/s]

4007]
3394 3315
350
300
2507 ;
] I
150 |
1039 [
100 —F ——== o
=i 398 | %
S0 o i
e [
{1 [t | i . :

Serpent Rijndael Twofish RC& Mars | Triple DES

Aren [CLB slices]
5000
4300
4000

3500
300 2737 20012

4438

2500

200001
1500

1076]_I _3-
356

1000/ =
; -

Twofish RO6 Mars Rijndael Serpemt | Triple DES

Speed/Area [kbit/s CLE slices|
1801548 [166.0
10—

140
120°
912
]tm_ Ty
e |
80 - B
sk i |
607 =
i |
407 :_ 5:_
207 i
|

Twolish Rijndael RC& Serpent Mars | Triple DES

Fig. 10 Results of implementing AES candidates using Xilinx Virtex FPGA devices.

10

Fig. 11 Combinational part of a single round of RC6 implemented using basic architecture. Shaded components had to be
added to the encryption unit, so it could perform decryption. The thick line shows the critical path in the circuit. Unit F
performs operation (2(X* mod 2%)+ X) mod 2% <<< 5. An arrow around a line means inverting the order of bits.

The relative size of the extra circuitry is the smallest for Mars and Twofish (less than 10%), and about 20%
for RC6 (see Fig. 11). For Serpent and Rijndael, encryption and decryption are performed by two independent
units of equal size. For Rijndadl, these two units share 16 look-up tables implementing inversions in the Galois
Field GF(2%). These look-up tables take about 45% of the area used for encryption. Thus, the extra decryption
circuitry takes for Serpent 100%, and for Rijndael about 55% of the area required for encryption itself.

Cipher Extralogic Extralogic area/encryption logic area
Twofish 2 32-hit XOR2, 2 32-bit MUX2 6%
Mars 2 SUB32, 3 32-hit MUX2 3%
RC6 2 SUB32, 2 32-hit XOR2, 8 32-hit MUX2 (see Fig. 11) 20%
Rijndael Decryption independent of encryption, except 16 S-boxes 8x8 55%
Serpent Decryption independent of encryption 100%

Table 1. Extralogic that must be added to the circuit implementing encryption, so that the modified circuit can perform
both encryption and decryption. Notation: XOR2 - 2-input XOR, MUX2 - 2-input multiplexer, SUB32 - 32-bit subtractor.

5.4 Critical path

The critical paths of all five AES candidates are characterized in Table I11. As an example, the critical path
of RC6 (without init MUX) isshown in Fig. 11.

Based on the characteristics of the critical path, the AES candidates can be divided into two main categories.
Ciphers from the first category, RC6 and Mars, include in the critical path one complex arithmetic operation,
such as modular multiplication or modular squaring, which determines the minimum clock period of these
ciphers. The second category includes Rijndagl, Twofish, and Serpent. In these ciphers, the critical path includes
one or several S-boxes, and several multiple-input XORs. The minimum clock period is the sum of the access
time to memories used to implement S-boxes, and delays introduced by multiple-input XORs and other smple
auxiliary operations. The critical path of Twofish contains additionally two 32-bit additions.

The effect of resource sharing between encryption and decryption on the critical path is the strongest for
RC6 (three encryption/decryption multiplexers in the critical path), very small for Rijndael, Twofish and Mars
(one encryption/decryption multiplexer in the critical path), and negligible for Serpent. In Mars, additional delay
(2 multiplexers) is caused by sharing resources between the forward and backwards keyed transformations.

11

Cipher Minimum Minimum Number Componentsin thecritical path
clock clock period - | of rounds (path flow / list of operations)
period - Virtex | XC4000 [ng]
[ns]

Rijndael 38.6 - 10 E/D MUX ® Sbox ® affinetransformation ®
MixColumn ® init MUX
S-box 8x8, XOR6, XOR5, XOR4, XOR2, 2 MUX2

Twofish 45.1 88.0 16 Sbox ® MDS® PHT ® key addition® xor ® E/D
MUX ® init MUX
6 S-box 4x4, 2 ADD32, 9 XOR2, XOR4, XORS5, 2
MUX2

Serpent 94.3 - 4 8 x {key mixing ® S-box ® linear transformation) ®
init MUX
8 S-box 4x4, 8 XOR2, 8 XOR7, MUX2

RC6 61.6 139.5 20 E/D MUX ® sguaring ® addition ® xor ® E/D
MUX ® variablerotation ® addition ® E/D MUX ®
init MUX
SQR32, 2 ADD32, ROT32, XOR2, 4 MUX2

Mars 100.6 - 32 2 mode MUXes® E/D MUX ® multiplication ®
XOR® init MUX
MUL32, XOR2, 4 MUX2

Tablelll. Critical paths in the implementation of the basic architecture for all AES candidates. Notation:

E/D MUX - encryption/decryption multiplexer, i.e., multiplexer used to change the data flow between encryption and
decryption; mode MUX - multiplexer used to change the data flow depending on the mode of transformation (e.g., forward
and backwards transformation in Mars); init MUX - multiplexer used to select between loading a new block of data and
feeding back data from the end of the cipher round (the only multiplexer shown in Fig. 3a); XORn - n-input XOR, MUX2 -
2-input multiplexer, ADD32 - 32-bit adder, MUL 32 - 32-hit multiplier mod 2%, SQR32 - 32-bit squaring mod 2%, ROT32 -
variable rotation of a 32-bit word.

5.5 Area critical components

The components contributing most to the circuit area, for each AES candidate, are shown in Table IV. The
ciphers fall clearly into two groups: Twofish and RC6 have the area approximately three to four times smaller
than the area of the remaining three candidates, Mars, Rijndael, and Serpent. The relatively small area of
Twofish and RC6 comes from the fact that both ciphers are of the Feistel type. The relatively large size of
Serpent and Rijndael comes from the fact that both ciphers are S-P networks, and the amount of resource
sharing between encryption and decryption is limited (no resource sharing for Serpent, about 45% resource
sharing for Rijndael). Additional factor contributing to the large size of Serpent is the use of eight different types
of S-boxes in eight subsequent cipher rounds.

Cipher #of CLB dices | #of CLBs- Areacritical components
- Virtex XC4000

Twofish 1076 907 96 S-box 4x4 (6 kbit), 18 32-bit XOR2, 24 MUL GF(2°)

RC6 1139 1222 2 SQR32, 12 32-hit MUX2, 2 ROT32

Serpent 4438 - 512 S-box 4x4 (32 kbit), 2048 XORn (linear transformation,
n=2..7)

Mars 2737 - 4 S-box 8x32 (32 khit), MUL 32, 22 32-bit MUX2

Rijndael 2902 - 16 S-box 8x8 (32 khbit), 24 MUL GF(2°), 256 X OR5 (affine and
inverse affine transformation)

Table IV. Cipher components contributing most to the circuit area. Notation: MUL GF(2°) - multiplication in the
Galois Field GF(2®), XORn - n-input XOR, MUX2 - 2-input multiplexer, MUL32 - 32-bit multiplier mod 2%, SQR32 - 32-
bit squaring mod 2%, ROT32 - variable rotation of a 32-bit word.

12

Therelatively large size of Marsis the result of the design decisions, such as
a. using two different kinds of rounds (mixing vs. keyed transformation). For the basic non-pipelined

architecture, only one type of round is active at atime.

b. using 4 large S-boxes 8x32 in a single round of the mixing transformation. Sharing two of these S-boxes
during mixing transformation is possible only at the cost of doubling the number of clock cycles required for
this transformation. (Our implementation still shares two S-boxes between the mixing transformation and
the keyed transformation.)

C. using area-consuming 32x32 bit modular multiplication.

The area of Mars, Serpent, and Rijndael is dominated by S-boxes. Even though the number and size of these
S-boxes is very different for each cipher, the total number of bits in memories implementing S-boxes, 32 kbits,
is identical for all three ciphers. This may explain the relatively similar size of all three implementations
expressed in number of CLBs.

5.6 Potential for inner-round pipelinig

Inner round pipelining can be most effectively applied to the ciphers with the following features:

a. the cipher round is composed of alarge number of layers, with al layers performing simple operations with
comparable delays;

b. the cipher round does not contain large hard-to-divide functional units.

Additionally, for FPGA implementations, it is advantageous if the implementation of the basic architecture

contains large number of CLBs with unused flip-flops (one bit registers).

The above conditions are the best fulfilled by Serpent. It is straightforward to introduce 8 internal pipeline
stages to the implementation round of Serpent (one implementation round = 8 regular cipher rounds), one after
each regular cipher round. Implementing pipeline stages inside of the regular cipher round is possible in theory,
but may be difficult in practice because of the clock frequency limitations imposed by the control unit.

The second cipher best suited for inner-round pipelining is Twofish. According to Table I, the critical path
of Twofish contains a large number of simple operations with comparable delays, including a 4x4 S-box read-
out, XOR operations, and additions. The most complex of these operations is a 32-bit addition. It is likely that
this operation may need to be implemented using multilevel carry-lookahead architecture to take the full
advantage of the inner-round pipelining in Twofish. Additionally, the FPGA implementation of basic
architecture of Twofish contains a relatively small number of unused flip-flops, which will cause that the circuit
areawill increase by alarger percentage than for Serpent with the same number of inner-round pipeline stages.

Rijndeal is relatively easy to pipeline, but its critical path contains only 7 elementary operations.
Additionaly, the most time-consuming of these operations, the 8x8 S-box read-out, is hard to divide into extra
pipeline stages. RC6 can be efficiently pipelined at the cost of increase in the circuit area resulting from using
fast architectures for addition and multiplication (e.g., carry lookahead and carry save). Mars is the most
difficult to pipeline because of the
a. irregular structure with different operations in various paths;

b. two types of rounds (mixing and keyed transformation) both using large S boxes;
c. need for the complex fast architectures for the pipelined multiplication and addition.

5.7 Potential for loop unrolling

The largest gain from loop unrolling can be achieved by ciphers with the following properties:
* small area used by the combinational part of a single round, which permits fitting a large amount of rounds in
the largest available FPGA device;
* amall delay of asingle round compared to the sum of delays eliminated by loop unrolling, including the round
multiplexer delay, the register delay, and the register setup time (as shown in formula (2)).
* potential for optimizations at the boundary between the last and the first operation of the cipher round.
Assuming the use of the largest available Virtex chip, RC6 and Twofish have the highest potential for loop
unrolling. The largest Virtex chip can easily fit ten RC6 rounds and eight Twofish rounds. Mars can be
implemented with four rounds unrolled; Rijndael and Serpent with only two rounds unrolled.

13

5.8 Potential for outer-round pipelining and mixed outer-inner-round pipelining

The largest gain from outer-round pipelining can be achieved by ciphers with the smallest area. The largest
number of pipelined rounds fitting within the largest available Virtex chip is the same as in the architecture with
loop unrolling. As aresult, Twofish and RC6 can benefit most from the outer-round pipelined architecture. The
throughput of both these ciphers exceeds 1 Ghit/s for the architectures with the maximum number of outer-
round pipeline stages. Additional speed-up can be obtained by combining outer and inner round pipelining,
leading to the mulitigigabit-per-second performance. For Serpent, the most straightforward form of mixed
pipelining, with 16 regular cipher rounds unrolled and a register after each regular cipher round (1/8 of the
implementation round), would result in an even higher performance. Mars can benefit substantially from both
forms of pipelining; Rijndael primarily from the inner-round pipelining.

6. Design procedure and tools

The design flow and tools used in our group for implementation of algorithms in FPGA devices are shown
in Fig. 12. All five AES ciphers were first described in VHDL, and their description verified using the
functiona simulator from Aldec, Inc. Test vectors and intermediate results from the reference software

implementations were used for debugging and verification
of VHDL codes. The revised VHDL code became an input

L *| Functional simulation to Xilinx tools performing the automated logic synthesis,

. Aldee, ActiveFHIN mapping, placing, and routing. These tools generated

:-ak el | i reports describing the area and speed of implementations,
Mappng, TR, o RRONe EFTET

a netlist used for timing simulations, and a bitstream to be
A, Foundaon Series— ysed to program an actual FPGA device. A final step is to
e iz verify the design experimentally, using physica FPGA
devices. We plan to perform these experiments using a PCI
FPGA board from Virtual Computer Corporation [VCC].
PO, PO ERGA Beard - THE most complex PCI board currently available from

e ([rrm——r—— VCC is based on the XC4062XL FPGA device. This

device is able to fit full implementations of Twofish and

RC6, and an encryption portion of Serpent. All details of
Fig. 12 Design flow for implementing AES our implementations and experiments will be described
candidates using Xilinx FPGA devices. in the technical report [CGOO].

Placing & Rouling

a

Medlist with taming, + Timing simulation

7. Need for interleaved operating modes

The full potential of hardware implementations of symmetric block ciphers can only be utilized in cipher
modes that support efficient use of pipelining, as shown in Fig. 8. To date, the ECB maode is the only operating
mode standardized by NIST that supports efficient pipelining. However, ECB is not regarded secure for
transmissions of large volumes of data, and most standard protocols recommend using CBC or CFB modes
instead. Therefore, we propose to speed-up the standardization effort, and include in the AES standard
interleaved modes of operation, such as the interleaved CBC mode defined by:

Ci = AESM; A IV) fori=1to N, and C; = AES(M; A Ci) for i>N . 4
The standard should support arbitrary values of the interleaving factor N, smaller than a certain maximum.

8. Conclusions

The results and analyses presented in this paper show that the differences in hardware performance of the
AES candidates are bigger and more significant than the corresponding differences in software performance. No
correlation between software and hardware performance was found. On the contrary, Serpent, believed to be the
slowest candidate in software, appeared to be the fastest of the five AES candidates in hardware. We believe that
the large differences among parameters of al five AES algorithms in hardware resulted primarily from internal
structure of these algorithms, and were not significantly affected by our implementation decisions. On the other

14

hand, we could not completely eliminate or predict the influence of the FPGA design tools and the VHDL
design entry method on the results of the comparison. Assessed exclusively from the hardware performance
point of view, the five AES finalists fall into the three distinct classes with different performance characteristics.

The first class includes Twofish and RC6. Both ciphers guarantee compact low-cost implementations with
medium speed compared to other candidates. In particular, because of the area constraints, Twofish and RC6 are
the only ciphers that can be implemented using low cost FPGA devices from the Xilinx XC4000 family. Both
ciphers can be substantially sped-up by outer-round pipelining (for non-feedback modes (ECB, counter mode)),
and - to the lesser extent - by loop-unrolling (for cipher feedback modes (CBC, CFB)). Among the two, Twofish
is in some respects superior to RC6. It is about 70% faster and is more suitable for inner-round pipelining. Both
ciphers use comparable area, and as a result their potential for loop unrolling and outer-round pipelining is
similar.

The second class includes Serpent and Rijndael. Both ciphers guarantee very high speed at the cost of the
relatively large area compared to the ciphers from the first class. The primary way of speeding up these ciphers
for non-feedback cipher modes (ECB and counter mode) is inner-round pipelining. Both ciphers have a similar
speed in the basic architecture. Rijndael can be implemented using about 35% less area. The more regular
architecture of Serpent makes it significantly more suitable for a multi-stage inner-round pipelining.

The third class is composed of Mars itself. This cipher shows the worst hardware characteristics of al five
candidates. It is over twice as slow than the next slowest candidate (RC6), and over 8 times sower than the
fastest AES cipher (Serpent). It also takes over twice the area used by ciphers from the first group, Twofish and
RC6. Further optimizations of the Mars implementation are certainly possible, but would require the higher
development effort than that devoted to other AES candidates.

It is interesting to notice that although four out of five candidates outperform Triple DES in terms of speed,
only Twofish has a comparable performance in terms of the speed/area ratio. Three other candidates, Rijndagl,
RC6, and Serpent, have a similar, and much lower than triple DES, value of this performance parameter.

Out of all five candidates, Twofish seems to be the most suitable for applications where the primary
requirement is the limited cost or area of the cryptographic hardware. Serpent and Rijndael both offer superior
performance for applications where the speed itself is a criterion of primary concern.

Acknowledgments

The authors would like to thank Christof Paar and his students, as well as Miles Smid and other members of the NIST
Computer Security Division for valuable comments and discussions. We also would like to thank our students, Po Khuon
and Tanvir Joy, for their work on implementation of Triple DES.

Literature:

[BCD+98] C. Burwick, D. Coppersmith, E. D'Avignon, R. Gennaro, S. Halevi, C. Jutla, S. M. Matyas, L. O'Connor, M.
Peyravian, D. Safford, and N. Zunic, "Mars - A Candidate Cipher for AES," NIST AES Proposal, June 1998.

[CG99] P. Chodowiec and K. Gaj, "Implementation of the Twofish Cipher Using FPGA Devices', Technical Report,
George Mason University, July 1999; available at http://www.counterpane.com/twofish.html.

[CGOQ] P. Chodowiec and K. Gaj, "Implementations of the AES Candidate Algorithms using FPGA Devices," Technical
Report, George Mason University, April 2000 (to be published on the web).

[EP99] A.J. Elbirt and C. Paar, "An FPGA Implementation and Performance Evaluation of the Serpent Block Cipher,"
Eighth ACM International Symposium on Field-Programmable Gate Arrays, Monterey, California, February 10-11, 2000.
Preprint available at http://ece.wpi.edu/Research/crypt/publications/index.html.

[NBD+99] James Nechvatal, Elaine Barker, Donna Dodson, Morris Dworkin, James Foti, Edward Roback, " Status Report
on the First Round of the Development of the Advanced Encryption Standard,” NIST report, August 1999.

[NSA98] National Security Agency, "Initia plans for estimating the hardware performance of AES submissions,”
http://csrc.nist.gov/encryption/aes'round2/round2.htm.

[RH99] M. Riaz and H. Heys, "The FPGA Implementation of RC6 and CAST-256 Encryption Algorithms," accepted for
CCECE'99, Edmonton, Alberta, Canada, 1999.

[RRS+98] R. Rivest, M. Robshaw, R. Sidney, and Y. L. Yin, "The RC6 Block Cipher,” NIST AES Proposal, June 1998.
[SKW+98] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, "Twofish: A 128-Bit Block Cipher,"
NIST AES Proposal, June 1998.

[SKW+99] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, "Performance Comparison of the AES
Submissions,” Second AES Candidate Conference, Rome, April 1999.

[VCC] Virtual Computer Corporation, http://www.vcec.com/

15

Session 2:

"Platform-Specific Evaluations”

AESFinalistson PA-RISC and | A-64:
Implementations & Performance

John Worley, Bill Worley, Tom Christian, Christopher Worle;JJ:|
Hewlett Packard Labs
Fort Collins, CO

Overview

The Advanced Encryption Standard selection process has, for the first time, included software execution speed as a relevant
criterion for the choice of the next standard. The initial submissions included keying, encryption, and decryption execution times, in
clock cycles, for Intel Pentium, Pentium I, and Pentium Pro microprocessors. While Pentium execution speeds are important, by no
means do they completely characterize software performance, particularly that of existing RISC microprocessors and the new |A-64
microprocessor family.

In order to enable a more complete characterization of software performance, our group, working from HP Labs, decided in January
1999, to study and publish the performance of likely AES finalists for PA-RISC and |A-64 microprocessors. We initially selected RC6,
Rijndael, Serpent, and Twofish. Our preliminary results were informally presented at the 1999 Rome Conference. Following the selection
of the five finalists, we included work on MARS. This paper discusses the issues, implementations, and results of our work for each of
the five AESfinalists.

Details of specific engineering tradeoffs for Itanium and McKinley chips remain proprietary. We therefore are not at liberty to
disclose complete source codes and performance details from which such information can be deduced. What we have chosen to present
are actual simulation cycle counts for a snapshot of the evolving McKinley design. These are not cycle counts for an actual product. We
offer them as well-substantiated, conservative indicators of the performance of the future family of 1A-64 processors. Itanium will be
somewhat slower; future implementations will be faster. We believe these results do provide a reasonable basis for software performance
judgments about the AES finalists. A summary table appears at the end of the paper.

In addition to processor cycle count, we aso present PA-RISC and IA-64 code sizes, register usage, and instruction-level
paralelism. Finally, we describe the programming approaches we employed for effective use of both architectures. We would be happy
to share full details with the finalists authors under non-disclosure terms.

Methodology

We focused on hand-optimized assembly language implementations of the algorithms for 128-bit keys and 128-bit blocks, using
compiled codes as sanity checkers. We agree with Bruce Schneier that AES codes will be implemented in this manner in actua systems;
this also leads to the clearest comparisons between instruction set architectures. Codes for this study were optimized for performance, not
code size or table size.

For PA-RISC we measured execution speeds on a PA-8500. We timed executions using the PA-RISC 64-bit interval timer, which
counts actua clock cycles. To eliminate cache and system effects, we ran tens of millions of executions, varying keys and data blocks on
alightly loaded system, and profiled those runs with minimum cycle counts. We observed that runs often would differ by only a few
cycles, and that the cycle counts formed Gaussian distributions. It was further observed that the input value (input key for keying, data
block for encryption/decryption) noticeably affected performance for algorithms that used table look-ups. Thus, while the PA-RISC times
are best observed times, we a so show the distribution’s average and maximum values.

Lacking 1A-64 hardware, we employed three different types of simulators. Initial debugging used a fairly fast and purely functiona
instruction set simulator. The second type was considerably slower, but simulated parallel execution, latencies, and memory hierarchy
behavior. This was used for additional code validation and preliminary execution cycle counts.

These simulators, while useful, did not guarantee absolute fidelity to the chip designs. Therefore, final timings used fully simulated
RTL designs of the Merced (now Itanium) and McKinley chips. This approach was extremely slow, and our results often varied from day
to day, as engineers improved their designs. We constructed special tools that automatically prepared test inputs and displayed the cycle-
by-cycle behavior of the microprocessor pipeline. The memory hierarchy was initialized for each run, and the timing could be computed
by subtracting cycle numbers from the pipeline outpuit.

Notation
A <<<n Left rotation by n bits
A >>>n Right rotation by n bits
A OB Bit-wise Exclusive-OR
A+ xB Matrix multiplication
[bO, b1, ..., bn] Column vector, LSB first
PA-RISC Facts

PA-RISC first shipped in 1986 and is the processor for Hewlett-Packard's RISC workstation and server products. Architecture
features include 64-bit virtual addressing, 32 general-purpose registers, and 32 floating point registers. Current processors implement the
64-bit Version 2.0 of the PA-RISC architecture.

1 John S. Worley jworley@fc.hp.com William S. Worley, Jr. worley@hpl.hp.com
TomW. Christian twc@fc.hp.com Christopher S. Worley cwor ley@fc.hp.com

1

AES Implementations & Performance

This study utilized the PA-8200 and PA-8500 microprocessor chips. Both of these chips are out-of-order superscalar designs,
capable of executing two memory operations and two integer or floating point instructions per cycle. Only one store instruction can
complete per cycle. Careful software scheduling is required to realize the full parallelism.

| A-64 Overview

This section provides a very brief overview of the |A-64, highlighting features in the discussions that follow. Readers familiar with
the architecture can skip this section.

Parallelism and Functional Units

The majority of processor architectures specify sequentia instruction execution. Microarchitectures then employ superscalar logic to
issue multiple instructions in parallel whenever possible. In contrast, the 1A-64 architecture puts al the parallelism cards on the table.
There are four types of functional units: M (memory), | (integer), F (floating point), and B (branch); each 1A-64 implementation has two
or more of each of these units. I1A-64 hardware detects when program parallelism exceeds the capabilities of the implementation, but
responsibility for organizing instructions to execute in parallel is wholly with the programmer or compiler.

I nstructions, Bundles, and | ssue Groups

Thereis a corresponding instruction class for each functional unit type, although a specific instruction may not be able to execute on
all units of that type in a given implementation. In addition, thereis an A (ALU) instruction class that can execute on both | and M units.
A instructions include most integer arithmetic and logical operations, so that otherwise idle memory units can be used for paralle
computation.

Three instructions are grouped into a bundle, where al instructions in the bundle may be €eligible to be issued in parallel to
functiona units specified by the bundle type. Sequential bundles that can issue in parallel form an issue group. One characteristic of an
|A-64 implementation is the maximum number of blﬁdl%that can issue together. For example, a processor that can issue at most two
bundlesin one cycleisreferred to as a“two-banger.”

Registers and the Register Stack

|A-64 provides 128 64-bit integer registers. The low 32 registers (r O - r 31) are common for all code. For function arguments and
local values, each procedure can allocate up to 96 additional registers in a register stack frame. Saving and restoring registers in the
register stack is handled by an independent hardware thread, so that no registers need to be saved and restored explicitly.

In addition to the integer registers, |A-64 provides 128 extended precision (64-bit mantissa, 17-bit exponent) floating point
registers, 64 1-bit predicate registers (see below), and eight branch registers for indirect branches.

Predication

A powerful festure of IA-64 is instruction predication. Every instruction, except for certain branch and control instructions, is
predicated, i.e., its execution is enabled or disabled by one of the 64 predicate bits. One predicate, p0, is hardwired to ‘1’ for instructions
that execute unconditionally or cannot be predicated. Predicates are set or cleared by compare instructions and certain floating-point
instructions. Also, the 64 predicates can be read or set in parallel using specia instructions. Predication allows, for example, one of two
instructions to execute based on a comparison condition, or for instructions to be enabled during the first pass of aloop and disabled for
all subsequent iterations.

Counted Loops

|A-64 provides hardware support for counted loops. The special registers ar . | ¢ (loop counter) and ar . ec (epilogue counter)
control when the branch instructions br . ct op and br . cexi t aretaken. For example, if ar. | c issetto9andar. ec issetto 0, a
counted loop will execute 10 times if the loop ends with br. ct op, 9 times if the loop begins with br. cexi t. The hardware is
designed to predict perfectly when abranch will be taken or fall through, so that counted loops can execute with no branch penalties.

Rotating Registers
When a subroutine allocates a register stack frame, some or al of the local registers, starting from r 32, can be set to rotate. Each
time a counted loop branch is taken, the rotating registers are circularly renamed such that the next iteration of the loop can operate on

different data without changing the register name. For example, if there are eight registers designated as rotating, the renaming is as
follows:

r32 - r33 - r34 - r35 - r36 - r37 - r38 - r39 - r32

Fixed portions of the floating point and predicate registers aso rotate. The high 96 floating point registers (f 32 through f 127)
rotate. The high 48 predicate registers (p16 to p63) also rotate, but with a dight difference. While the loop counter ar . | ¢ is non-zero,
a‘'l vaueisshiftedinto pl6; if ar. | ¢ iszero and the epilogue counter ar . ec > 1, a‘0’ valueis shifted in instead.

Programming | ssues

There are three operations commonly used in cryptographic algorithms that are not fully realized in the integer hardware on PA-
RISC and | A-64: fixed 32-bit rotations, variable 32-bit rotations, and 32x32 - 32 unsigned integer multiplies.

2 This term comes from the slang term for a two-cylinder engine. While three-banger or more implementations are foreseeable, it
seems unlikely that | A-64 will ever giveriseto, say, aV12.

2

AES Implementations & Performance

PA-RISC

On PA-RISC, fixed rotations can be executed in one cycle using the shift right pair word (shr pw) instruction. This instruction
concatenates the low 31 and 32 bits from left and right source registers, respectively, shifts right the specified distance, and leaves the
high 32 bits undefined. If the two source registers are the same, the low bits are concatenated with the high bits, exactly as would occur
in arotation. Thus, fixed rotations on PA-RISC can be defined as follows:

ROTR . nmacro src, dst, count
shr pw src, src, count, dst
.endm

ROTL . nmacro src, dst, count
shr pw src, src, 32 - count, dst
.endm

Variable rotations use the same strategy, except that an extra cycle is required to move the shift distance into the SAR (shift amount
register). For aright rotation, the actual shift distance is used. For a left rotation, the 5-bit complement of the distance is used and the
value is pair-shifted right one before the variable shift. The left shift also executes in two cycles since the mt sar cm (move to SAR
complement) and the first shr pw can issue in the same cycle on the PA-8000 family.

Integer multiplication on PA-RISC requires using the unsigned integer multiply in the floating point unit. Since the only path for
moving data between the integer and floating point units is memory, the multiplicands must be stored, loaded into the FPU, multiplied,
stored again, and reloaded into the integer unit. This adds latencies on both sides of the multiply, in addition to the multiply timeitself.

|A-64

Although the 1A-64 architecture has a shift right register pair instruction, it only operates on full 64-bit registers. This can still be
used to implement 32-bit fixed rotations in two cycles as follows:

dep.z TMP = src, 32, 32

shrp dst = src, TMP, count + 32
for right rotations, and

dep.z TMP = src, 32, 32

shrp dst = src, TMP, 64 - count

for left rotations.

The dep. z instruction puts the low 32 bits of the source register in the high half of atemporary register, clearing the low half. The
pair-shift concatenates the low bits with the high bits and shifts far enough to put the proper set of bitsin the low half of the destination.
Like the PA-RISC instruction, the destination’s high half is not cleared. None of the AES finalists reguire these bits to be cleared;
however, the zxt 4 instruction can be used if necessary.

On |A-64, variable rotates are implemented much as in the C language: shift left j , shift right (32 - j), OR or ADD the results
together. Thisinvolves four operations and a minimum of three cycles. The variable shifts are executed on the multimedia units (MMUS).

Like PA-RISC, the IA-64 primary integer multiply is implemented on the floating point unit and involves latency cycles to move
back and forth. However, 16x16 MMU multiplies and parallel adds can be used to compute and sum the partial products instead. Thisis
effective when only the low 32 bits of the result are of interest. In particular, the parallel 16-bit unsigned multiply and shift instruction
(pnpyshr . u) can be used to complete a 32x32 - 32 multiply.

If we consider multiplicands derived from A as four 16-bit elements, A% can be computed with two multiplies and two adds as
follows:

[o]o[a]Ao

*>>0 | 0 | 0 |ALo|ALo|:| 0 | 0 | Au A <15. . 0> | A <15, . 0> |
+

*>>16|0|0|AL0|AL0|:|0|0| A F<31..16> | 0 |
+

|0|0|AH|AL0<15..0>| 0 |

[o]0 [Ao] 0

One of the operands is just the argument, A. The other two arguments are generated by the 16-bit mux MMU instructions; the
additional addend is derived from the first product using the 16-bit mi x instruction. The general 32x32 - 32 requires three multiplies and
two additions. If we consider multiplicands derived from A and B as four 16-bit elements, the operations are:

| 0 | 0 |AH| |ALo *>>0 | 0 | 0 |BL0|BLO|:| 0 | 0 | Ay BLo<15. . 0> | A BL<15. . 0> |
+

|O|O|AL0|O *>>0|O|O|BH||BL0|:|O|O|ALOBH|<15..O>| 0 |
+

|O|O|AL0|O *>>16|O|O|B|_o|B|_o|:|0|O|A._oBLo<31..16>| 0 |

Two of the operands are just the arguments, A and B. The other two arguments are generated by the 16-bit m x and nrux MMU
instructions.

AES Implementations & Performance

It has been noted that with better hardware support for 32-bit rotations and 32x32 - 32 multiplication, al the AES finalists will
outperform Pentium on 1A-64. In the performance analysis for each algorithm, we have estimated performance for a hypothetical 1A-64
implementation, called | A-64++, with the following enhancements:

» Asingle-cycle shift right pair word instruction, asin PA-RISC

» Single-cycle, 32-hit, left and right variable rotate instructions

» Atwo-cycle 32x32 - 32 unsigned multiply

Mars

The Mars encryption scheme (IBM team) uses a mix of approaches. substitution boxes, Feistel networks, multiplication, and fixed
and variable rotates. The single substitution box, S[], is fixed, and is employed both as a 512 word array (9-bit index), and as low
(SO[]) and high (S1[]) 256 word arrays (8-bit index). The principal challenges for PA-RISC and |A-64 implementations are the
32x32 - 32 multiply and variable rotates.

Keyi ngEI
Mars keying initializes the first N elements of a fifteen-element array, T[] , to the input key K[] , where N is the size of the key in
32-bit words. The key is then padded to 15 words by setting T[N] — N and zeroing the remainder of the array. Instead of generating the

entire expanded key directly, Mars generates ¥4 of the array, or 10 words, each time, repeating the process four times to develop the entire
key array, K[] . There are three steps in each iteration: linear transform, stirring, and storing. The linear transform applies the formula:

TLi] = T[i] O ((T[i-7 nmod 15] O T[i-2 nod 15]) <<< 3) O (4i + R
to each element of the array, where Ris the iteration count (0..3). Stirring uses the following formula:
T[i] = (T[i] + S[T[i-1 nod 15] & Ox1ff]]) <<< 9
applied to each word, repeated four times. Finally, 10 words from the intermediate array are stored in the expanded key array as
follows:
K[10xR + i] = T[4i nod 15]
which effectively storeswords 0, 4, 8, 12, 1, 5, 9, 13, 2, and 6, in that order, from the temporary array. After all the expanded key
words are generated, those used in multiplication (K[5] , K[7], ..., K[35]) are modified if they are weak, i.e., contain long runs of 1's
or 0’'s. The algorithm for identifying weak key words comes from the Mars implementation by Brian Gladman.

PA-RISC

The PA-RISC implementation keeps T[] in registers. The linear transform, the inner stirring loop, and key stores are straight-lined.
In the fix-up phase, the two-ALU PA-RISC has sufficient execution bandwidth to compute the fix-up mask in parallel with looking for
long runs of 1's or 0's. If there are no such runs, the remainder of the fix-up is skipped. Using the authors' estimates that statistically 1
out of 41 keys are weak, the extra computation is skipped 97.6% of the time, a performance win even with a branch penalty.

|A-64

The 1A-64 Mars keying implementation uses software pipelining to increase keying speed. The routine allocates a 16-register stack
frame, al of which arerotating. The register usage is as follows (indices are modul o 15):

r32 r33 r34 r35 r36 r37 r38 r39 r40 r41 r42 r43 r44 r45 r45 r47
LT | T | oo | T | 7o | o | Tor | Tis | Too | Tiso| Tt | T | T [| 70 | 7

By assigning T, — T; at the end of the loop, this organization implements a 15-register rotation. The linear transform XORs T,
(r 33) and T;.; (r 38), rotates the result, the XORs with T; and the iteration constant (4i + R). Thiswould normally require four cycles;
however, the transform can be reorganized into a two-stage, two-cycle pipeline. The first stage computes T;., 0 T;.; and extracts the high
three bits of the result; the second phase computes T; 00 (4i + R) and completes the rotation, then XORs the final result. The loop uses
rotating predicates to disable the second phase on the first iteration, while the last execution of the second phase is handled after the loop
so that the values return to their initial positions when the loop is complete.

Pipelining the inner stirring loop is limited by theuse of T[i -1 nbd 15] in computing T[i] ; however, the high-order nine bits
extracted for rotation can be used to start the S-Box look-up for the next iteration. This allows a two-stage, four-cycle pipeline, which
executes 33% faster than the 6-cycle, non-pipelined equivalent.

Like PA-RISC, the fix-up mask can be computed in parallel with looking for runs of 1'sand 0's. Unlike PA-RISC, branchesinclude
‘hints', so that the branch penalty is only incurred for weak keys, or 2.4% of the time.

Encryption

Mars encryption consists of four phases, each repeated eight times: forward mix, forward keyed transform, backward keyed
transform, and backward mix. The forward and backward mixing uses table look-ups, fixed rotation, XORs, and addition and subtraction
in arotating pattern, e.g., fm x(A, B, C, D),fmx(B, C, D, A),etc. Thereareasymmetric additionsin steps 1, 2, 4, and 5 of
the forward mix, with corresponding subtractionsin steps 2, 3, 5 and 6 of the backward mix.

% This is the ‘tweaked' version of the Mars keying. The implementation of the initialization, mixing, and stirring phases of the
origina schemeisdiscussed in Appendix B. The key fix-up isidentical for both schemes.

4

AES Implementations & Performance

The core of the keyed transforms is the E function, which takes one data word and uses table look-up, multiplication, variable
rotation, additions and XORs to generate three datawords (L, Mand R) to add or XOR with the other three data words as follows:

Forward Mode Backward Mode
Df1] +=1L 1] *=R
D 2] += M Df2] += M
O3] "=R O3] +=1L

On PA-RISC, the mixing phases are coded as straight-line operations. Even with the four table look-ups per step, there is enough
memory bandwidth to load the 16 multiplicative keys into the floating-point unit at the same time. The real bottleneck is the integer
multiply in the E function: the data word must be rotated, stored, loaded into the floating point unit, multiplied, stored again and rel oaded
into an integer register. Although an addition and table look-up can be evaluated in paralel, these do not fully amortize the performance
cost of the multiply.

On 1A-64, both forward and backward mixing can be coded as a single loop: the asymmetric operations are controlled by loading a
specific bit pattern in the rotating predicates, enabling the appropriate operation at the proper step. Because of perfect branch prediction
with counted loops, this approach executesin the same cycle count as straight-line code.

On 1A-64, MMU multiplies are used to compute the E function multiplication. Once the multiplication is complete, the remainder of
the E function can be evaluated. Like the mixing phases, a predetermined bit pattern loaded in the rotating predicates controls whether
the forward or backward mode operations are enabled at each step.

Performance
Cycles Pentium PA-RISC IA-64 1A-64++
Min Average Max
Keying 2128 1797 1804.65 1879 1408 1408
K eying (Original) 3894 1969 | 1975.89 2060 1903 1313
Encryption 320 540 563.01 584 511 255
Decryption 374 538 552.37 566 527 271

On PA-RISC, Mars keying executes in 1797 cycles, compared to the best-reported Pentium results of 2128, a 15.6% performance
advantage. Encryption and decryption, however, run slower due to the multiplication overhead: 68.8% slower for encryption (540 vs.
320) and 43.9% slower for decryption (538 vs. 374).

On |A-64, keying completes in 1408 cycles, a 33.8% performance gain. Encryption and decryption, with the extra cycles required
for multiplication and variable rotation, are slower than Pentium: 59.7% dsower for encryption (511 vs. 320) and 40.9% slower for
decryption (527 vs. 374). Keying on 1A-64++ is the same 1408 because the software pipelines hide the extra cycles needed for rotation.
Encryption improves to 255 cycles (20.3% faster than Pentium), and decryption also improvesto 271 cycles (27.5% faster).

RC6

The principal programming challenge when implementing RC6 (Rivest, Robshaw, Sidney, Yin) on PA-RISC and |A-64 is the lack
of the fast 32x32- 32 multiply and variable rotate primitive the algorithm requires for performance. On the positive side, |A-64's
rotating integer registers and instruction predication simplify data management and allow for a very compact code size.

Keying
RC6 keying starts with the input key, L[] .The key array, S[] , isinitialized using the two magic numbers P;, = 0XB7E15163 and
Q3 = 0X9E3779B9, as follows:

S[0] = P32

S[1] = P2 + Q2

S[2] = P32 + 2 * Qgg
S[3] = P32 +3* Q2

The keying a gorithm then performs three mixing passes over the two arrays:
A= 9] (S[i] + A+ B) <<< 3
B=L[j] = (L[]] + A+ B) <<<(A+B)

AES Implementations & Performance

where A and B are initially zero, and i and j count circularly through the key and input key arrays, respectively. If the first pass
through the key array is handled separately, it is possible to combine the key array initialization with the first mixing phase. The first mix
can aso be partialy hard coded, sinceA = B = 0, and §0] = Ps,. Since, after the first loop pass, B isjust the previous, modified input
key word, the variable B is replaced with LPREV(k) , the user input key L[(k- 1) nod 4] . Thefirst passis coded as follows:
keyval = P32;
A =T = ROTL(P32, 3);
for (k = 1; k < NKEYS; ++k)
LPREV(k) = ROTL(LPREV(kK) + T, T);
keyVal += @2;
S[k - 1] = A
A = ROTL(keyval + A + LPREV(K), 3);
T = LPREV(k) + A
}
S[NKEYS - 1] = A
This organization saves one full load and store of the key array and does not require computing the modulus 2* r
the number of encryption rounds. The last two passes are identical, with a similar structure to the first pass, but do not, of course, re-
initialize the key array.
For PA-RISC, each instance of the loop can be unrolled four ways, with the input key words reordered circularly each time - this
eliminates loading and storing the keys, and the modulus computation on the input key index.
The | A-64 architecture suggests a different strategy for implementation. The large register file allows the entire key array to be kept
in registers; the rotating integer registers naturally mimic the way data flows through the computation, such that no indexing or modulo
operations are required. The keying routine allocates a 56-register stack frame, all of which are rotating. The rotating registers are

alocated as follows:
r32-r33 r34 r35

+ 4, wherer is

r36 r37 r 38 r39 r40 r41 r42-r82 r83 r84-r87
Sacive | Spev | KeyArmay | Sye Unused

Unused LX I-n I—n+1 I-n+2 I-n+3 Sx

where<L, ... L3> areinitialized from the user input key. In order to circulate the keys and key array separately, Ly « L.z and Sy
— S\ex before the registers are rotated. Each time through the loop, the code operates on L,,, Sactive: ad Sprey. ReWriting the mixing loop

in these terms:

for (k = 1; k < NKEYS;, ++k) {
Ln = ROTL(Ly + T, T);
A= ROTI—(SActive + Sprev *+ Ln, 3),
T=~Ln + A
Sactive = A
Lx = Ln+s;
Sx = Shext;
}

Predicated instructions enable key array initialization during the first mixing pass and storing the final key words during the final
pass, al within the same code loop and without branching. There are enough unused instruction slots to compute the two qualifying
predicates with no additional cycles. The keying routineis thus coded in asingle loop:

for (k =1; k <3 * NKEYS; ++k) {
Ln = ROTL(L, + T, T); if (firstMXx) Sactive = Sprev + Qs2;
firstMx = k < NKEYS-1; lastM x = k >= 2 * NKEYS;
if (lastMx) *S++ = A

Sprev = A

A = ROTL(Sactive + A + Ln, 3);
T =1L, + A

Lx = Ln+s;

Sx = Shext;

}
*S = A
This coding is extremely compact: the entire routine consists of 39 instructionsin 16 1A-64 bundles; the core loop is 20 instructions.

Encryption

The RC6 definition is compact and elegant, but the algorithm relies on a fast 32x32-32 multiply and variable rotate for
performance. To multiply on PA-RISC, the two data words must be stored, loaded into the floating point unit, multiplied, stored again
and reloaded into integer registers. The inner loop is unrolled to rotate the data words.

On 1A-64, MMU multiplies are used to compute A2, Once the full multiplication is complete, the shl add instruction computes
thefinal product 2A> + A = A*(2A + 1).Using rotating registers for the datawords, RC6 encryption can be coded in asingle loop.

AES Implementations & Performance

Performance
Cycles Pentium PA-RISC IA-64 1A-64++
Min Average Max
Keying 1632 1077 1077 1077 1581 1057
Encryption 243 580 590.76 597 490 150
Decryption 226 493 496.37 499 490 130

On PA-RISC, RC6 keying executes in 1077 cycles, compared to the best-reported Pentium results of 1632, a 34% performance
advantage. Encryption and decryption, however, run slower due to the multiplication overhead: 138% dower for encryption (580 vs.
243) and 118% slower for decryption (493 vs. 226).

On 1A-64, keying completesin 1581 cycles, a 3.1% performance gain. Encryption and decryption, with the extra cycles required for
multiplication and variable rotation, are slower than Pentium: 101.7% slower for encryption (490 vs. 243) and 116.8% slower for
decryption (490 vs. 226). For |A-64++, keying is estimated to run in 1057 cycles, 54% faster than Pentium, encryption in 150 cycles
(38.3% faster), and decryption in 130 cycles (42.5% faster)

Rijndael
The principles for a fast Rijndael (Daemen, Rijmen) implementation are largely explained in the algorithm specification. A short
comment in section 5.2.2 summarizes the general approach:

“In the table-lookup implementation, all table lookups can in principle be done in parallel. The EXORs can be done
in parallel for the most part also.”

This turns out to be an understatement. In other AES candidates, paralelism must be squeezed from the specification, while
Rijndagl’ s parallelism cup runneth over. Even the keying phase has considerable parallelism, aswill be shown.

Realizing this parallelism requires five 4K tables, as discussed below, although only two tables are used for any one operation. Each
4K table is made up of 4 256x4 byte tables, where each 1K table is rotated one byte position from the previous. The tables and the
operationsthey'reused in are:

S-Box Keying, Encryption
I mplements byte substitution only
[-Box Decryption
Implements inverse byte substitution only
Column Mix Encryption
Main substitution box - combines the byte substitution and column mix operations
Inverse Mix Decryption
Inverse substitution box - combines the byte substitution and inverse column mix operations
Key Mix Keying

Column mix box for computing the inverse key table

These tables are all derived from the basic GF(2%) mathematics outlined in the specification. A simple C program is used to generate
all tables and print them as C array declarations to compile and link with the algorithm codes. While 20K bytes of tables may be not
optimal for some target implementations, large memory, large cache machines like PA-RISC and 1A-64 gain substantial performance
with what is negligible extra data. Rijndael outperforms all other AES submissions in keying, encryption, and decryption. In particular,
Rijndael keying isafull order of magnitude faster than most other algorithms.

Keying
Rijndael key expansion looks largely serial. There are four look-ups every fourth key word, but little else to suggest parallelism. The
discussion in section 5.3.3, however, shows that decryption can be more efficiently implemented if an “inverse” key table is used. If the
basic key generation loop is unrolled four times, we can combine the inverse key computation with the key generation:
A = SubByte(RotByte(D)) ~ Rcon[i];
B "N A
C " B;
D" C
I nvM xCol um(A) ;
I nvM xCol um(B) ;
I nvM xCol um(C) ;
I nvM xCol um(D) ;

Clearly, the | nvM xCol umn operation, which is four byte-indexed lookups into four 256-entry tables and three XORs, can begin
as soon as the key word is ready. Thus, both the forward and inverse key tables can be computed in the same time as computing the
inverse table. As a minor space optimization, the last forward key and first inverse key, which are identical, are stored only once in a
combined key table.

Both the PA-RISC and | A-64 implementations are straightforward: as soon as the forward key is available, start the look-ups for the
inverse key. Two look-ups are performed on the key word A, but only one set of byte extractions is needed, saving four operations per

B
C
D

o0Owm>»

7

AES Implementations & Performance

round. PA-RISC has 28 registers available to a subroutine: al of these are needed to hold the intermediate results. The large register file
on |A-64 provides enough temporary registers to perform the computation with maximum concurrency. Rijndael keying improves greatly
when everything can be kept in registers.

On PA-RISC, a load address can be the sum of a base register and a scaled offset register; thus, table look-up requires two
instructions. |A-64, however, only takes aload address from a register without offset. Therefore, a table look-up must explicitly scale the
index and add it to the desired table address: this is accomplished with the shl add instruction. The sequence of extract, scale and add,
load is pipelined, so that the entire look-up sequence only requires one extra cycle over the equivalent PA-RISC sequence. The greater
parallelism in |A-64 alows the forward key computation and XOR trees to overlap the look-ups, giving it an overall performance
advantage.

Encryption

Rijndael encryption, while defined as several, separate steps, can be collapsed into a single set of table look-ups by (1) computing
the look-up tables to combine the byte substitution and column mix operations, and (2) selecting the index bytes from the data block to
reflect the row rotation in each round. Decryption is identical except for the look-up table and the order of byte selection. It is not
surprising, then, that encryption and decryption are very similar to keying, except that only 16 look-ups are done per round instead of the
20 performed for each keying round.

Performance
Cycles Pentium PA-RISC IA-64 1A-64++
Min Average Max
Keying 1338 239 249.25 261 148 148
Forward Keying 217 85 92.18 101 104 104
Encryption 284 168 1755 193 124 124
Decryption 283 168 175.88 192 125 125

On PA-RISC, Rijndadl full keying executes in 239 cycles, compared to the best-reported Pentium results of 1338, a 5.6:1
performance advantage. Encryption and decryption are faster: 40.9% faster for encryption (168 vs. 284) and 40.6% faster for decryption
(168 vs. 283). On 1A-64, keying completesin 148 cycles, a 9:1 performance improvement over Pentium. Encryption and decryption are
also faster: 56.3% faster for encryption (124 vs. 284) and 55.8% faster for decryption (125 vs. 283).

The parallelism of Rijndagl saturates a two-banger 1A-64. To explore the limits of Rijndael’s parallelism, a code schedule was
developed for a hypothetical, four-banger implementation. With this 12-way parallel 1A-64, the inner loop of Rijndael encryption can be
executed in 7 cycles, which suggests a total encryption time of 74 cycles per 128-bit data block. This is only one cycle short of the
theoretical limit of 6 cycles per round for an arbitrarily wide |A-64 implementation, which would perform 16 extracts, 20 address
computations, 20 loads, then three levels of XORs.

Serpent

The heart of the Serpent algorithm (Anderson, Biham, Knudsen) is the set of Boolean equations implementing the “bit-dice”
substitution boxes. One set of equations was submitted with the AES proposal; Brian Gladman and Sam Simpson used a recursive
expression search program to develop an alternatﬁ set of equations that improved performance on the Pentium-Il platform. Dr.
Gladman, however, cautions on his Serpent web page™

“On any particular machine it will be desirable to experiment with the order of terms (where there is quite a lot of
flexibility) and with the reuse of the temporary variables used during function evaluation.”
Taking this advice to heart, the two sets of egquations, along vﬂth an earlier version of Gladman’s equations, and a set of equations
optimized for Pentium submitted to the authors by Dag Arne Osvik® were analyzed according to the following metrics:

Ops Count of Boolean operations required to compute the substitution or reverse substitution function. The
equation parser looks for occurrences of A & ~B to take advantage of the and- conpl enment
instruction in both the PA-RISC and 1A-64 instruction sets.

Cycles Number of steps required to complete the computation on a highly parallel machine, such as |A-64,
and atwo-ALU operation superscalar machine, such as PA-RISC.

Width For 1A-64, the largest number of operations executed concurrently.

Temps Number of temporary values. In order to reduce the number of temporaries, a smple register analysis

was performed that first re-used the output terms as intermediate results, then assigned temporaries as
needed by the computation.
The results of this analysis for 1A-64, summarized in Table 1 below, are interesting: even though the Gladman equations
consistently have fewer operations than the others, only 4 of the 16 sets compute faster. When the equations are analyzed for two-ALU

* The expression search program, Boolean equations and reference implementations are available at
http://www.btinter net/~brian.gladman/cryptography_technology/Ser pent

® Dag Arne Osvik osvik@ii.uib.no

AES Implementations & Performance

operation on PA-RISC, the results (Table 2) favor Gladman's equations, but four of Osvik's equations compute faster. A follow-up
submission from Mr. Osvik for S-Box 3 resulted in a spectacular, 4-cycle, solution for |A-64, even though it has the highest operation
count of any equation.

The conclusion here is that there is no optimal set of bit-slice equations for all Serpent implementations: the capability and
constraints of the target machine must be carefully considered. The authors invite others to submit their own equations for analysis, and
offer the analysis tools used here to the Serpent team for their own use.

Keying

Serpent keying starts with the input key, padded to 256 hits, and generates 132 4-byte values with the recurrence:

W= (WsOWsOW30OW,0ObO i) <<<11

where W_g = input key word 0, W_; = input key word 1, etc., and ® is 0x9e3779b9, derived from the Golden ratio. The resulting
values, [Wy ... Wq3q], are then processed in groups of four, <Wp, W1, Whio, Wiis>, applying the Serpent forward substitution boxes in
theorder S;, S;, Si, So, Sz, -+, Sy Ss- This generates the 33 128-hit keys required for encryption.

Inspecting the recurrence, there is an active state of eight words and that W replaces W. g at each step. If we label the initial key
wordsW_g=A, W, =B, ... W = H, we can rewrite the recurrence as the following pattern:

A =(AOD OF OH O 0 0 <<< 11
B =(BOE OG OA 0O¢0O0 1) << 11
C =(COF OH OB O 0O 2 <<< 11
D =(DO0G OA OC 0O¢ 0 3 <11
E =(E0OH OB OD 0O¢ 0O 5) < 11
F =(FOA OC OF 0O¢ 0 6) <<< 11
G =(GO0B OD OF O 0 7) << 11
H =(HOC OF OG 0O¢ 0 8) << 11
A =(AOD OF OH 0O 0O 128) <<< 11
B =(BOE OG OA 0O¢ O 129 <<< 11
c =(C F OH OB 0O¢d O 130) <<< 11
D =(DO0G OA OC Od O 131) <<< 11

This formulation has some limited parallelism in the XOR trees. Eventually, the equations will serialize on the 11-bit rotation, but
the overall sequence can be organized on a parallel machine to minimize the performance effect. Intermediate loads and stores can be
eliminated by overlapping the S-box lookup for <W,, Wy1, Whio, Whez> with the computation of <W.4, Wiis, Wi, Wyi7>. Because
different S-boxes are used at each step, the highest performance for Serpent keying is realized by a straight-line implementation.

On PA-RISC, limited to two-way integer instruction parallelism, each set of four recurrence computations saturates the processor
for 11 cycles (22 operations). The 11-bit rotation is implemented with a single instruction (shr pw); common subexpressions (e.g., F O
H) remove two of the 24 operations (five XORs and one rotate per step, times four steps). Since PA-RISC does not have an immediate
XOR operation, the (® O i) term is computed by adding the low 11 bits of the value (constant for each step) to the high 21 bits
(constant for all steps); thus, the computation still occurs in one cycle. To avoid errors, the 11-bit values are generated by a simple
program.

|A-64 rotation requires two instructions (deposit and shift register pair). This increases the cycle count for computing four steps
from 11 on PA-RISC to 14. However, the machin€'s greater parallelism can be employed to overlap S-Box and recurrence logic as
follows:

Recurrence(W, W, W, W)

Recurrence(W, W, W, W)
Recurrence(W, W, Wo, W)
Recurrence(Wsz, Ws, W4, Ws)

Recurrence(W24, Wa2s, Woas, Wo27)
Recurrence(Wz2s, W2, Wao, Wa1)

Sbox3(W, W, W, W)
Sbox2(W, W, W, W)
Sbox1(W, W, Wo, Wai)

Shox5(W20, Wzll, .V\llzz, W23)
Sbox4(W24, W25, Was, Wo27)
Sbox3(W2s, W29, W30, Wa1)

Each step in this paralel evaluation, including storing the key words, executes in the 14 cycles needed for the recurrence alone,

yielding a substantial speed-up for Serpent keying.
Encryption

Serpent encryption and decryption use 32 rounds of key exclusive OR’s, substitution box logic and linear transforms. The S-box

issues are amost identical to those for keying, as discussed above. The linear transform, which accelerates the avalanche effect, limits the
potential for overlap with the S-box computations. Depending on the S-box equations used, a most one or two cycles can be removed
per S-box; the current implementation overlaps one cycle for six of the eight S-box equations.

AES Implementations & Performance

The forward linear transform, diagrammed in Figure 1, consists of 16 operations (six fixed rotations, two rotations, eight exclusive-
OR’s). Ideally, this sequence can be executed in seven cycles on a parallel machine:

Xo = X <<< 13 Xo X <<< 3
X = Xt O Xo X3 = X3 0 X Tl = X << 3
X=X O X% Xs = X3 O0T1
X = X; <<< 1 X3 = X3 <<< 7
Xo = Xo O X3 Xo = X2 O X3 T2 = Xp << 7
Xo = X O X1 Xo = X2 O T2
Xo = Xo <<< 5 Xo = Xp <<< 22
Theinverse linear transform, diagrammed in Figure 2, also has 16 operations; however, it can be computed in five cycles:
Xo = Xg >>> 5 Xo = Xo >>> 22 Tl = Xi O X3 T2 = X3 >>> 7
Xo = X OT1 Xo = X O X3 T3 = X4 << 7 Xp = X >>> 1
X1 = Xt O Xo Xo = X O T3 T4 = X << 3
Xo =X 0 X Xz = X 0 X Xo = Xo >>> 13
X3 = X3 O T4 Xo = Xo >>> 3

On PA-RISC, the single-cycle fixed rotation allows both transforms to execute in eight cycles, optimal for the two-way superscalar
machine. The two-cycle rotation on 1A-64 increases the operation count to 22, and the dependencies are such that the best
implementation for the transforms requires 12 cycles. Loading and X ORing the key material in parallel with the transforms can reclaim
some performance; however, the linear transformation accounts for over 50% of the encryption and decryption cycles.

As with keying, the best performance is achieved with straight-line code. The program source for both PA-RISC and 1A-64 make
heavy use of macros and bear strong resemblance to the algorithm specification. An extension of the software tools used to andyze
Serpent equations actually produces the raw instruction stream for each equation, in either machine language format, which is then easily
integrated into the source program through the macro definitions.

Performance
Cycles Pentium PA-RISC IA-64 1A-64++
Min Average Max
Keying 1292 668 668.79 669 475 380
Encryption 900 580 580 580 565 468
Decryption 885 585 586.62 587 631 407

On PA-RISC, Serpent keying executes in 668 cycles, compared to the best-reported Pentium results of 1292, almost a 2:1
performance advantage. Encryption and decryption also run substantially faster: a 35.6% advantage for encryption (580 vs. 900) and a
33.9% advantage for decryption (585 vs. 885).

On 1A-64, the extra parallelism pays off handsomely in keying, where the routine completesin 475 cycles, a 2.7:1 performance gain
over Pentium. Encryption and decryption, with the extra cycles required to complete the linear transform, are better than Pentium,
although not as overwhelmingly: 37.2% for encryption (565 vs. 900), 28.7% for decryption (631 vs. 885). For 1A-64++, keying is
estimated to run in 380 cycles, 3.4 times faster than Pentium, encryption in 468 cycles (48.0% faster), and decryption in 407 cycles (54%

faster).
) | i
<<< 13 <<<3
—l Y l

-« <<3 = > D l
& YyYv E‘
<«<<1 D I
v v
Y + Y >>>1 ‘ & ‘ >>>7
— @D S —
! ; e
<<<5 <<< 22 >>>13 ‘ &) ‘ >>>3‘ ‘) ‘
oo o b
Figure 1l —Serpent Linear Transform Figure 2 — Serpent Inverse Transform

10

AES Implementations & Performance

AES Submission Gladman (Best) Osvik
Ops [Cycles|Width|Tmps|] Ops |Cycles|Width| Tmps| Ops |Cycles|Width| Tmps
SBox 0 18 9 6 15 6 4 3 17 4 5
SBox 1 18 9 5 3 14 8 3 2 17 7 3 3
SBox 2 16 9 3 4 16 8 3 3 14 7 3 5)
SBox 3 18 7 5 4 16 8 5 3 21 4 6 6
SBox 4 19 7 4 5 15 8 3 3 19 9 3 3
SBox 5 17 8 3 4 16 7 4 3 18 7 3 3
SBox 6 19 6 7 4 17 6 5 4 17 9 3 3
SBox 7 19 8 4 3 17 11 3 3 19 8 4 5
1 Box O 19 8 5 4 15 10 2 2 18 8 8 4
| Box 1 18 9 3 3 17 7 5 2 18 11 3 3
| Box 2 18 7 5 4 16 8 4 3 18 7 8 8
1 Box 3 17 7 4 3 17 9 4 4 17 3 3
| Box 4 17 7 4 4 17 6 5 5 19 11 3 3
| Box 5 17 7 5 4 16 7 4 3 18 10 2 3
| Box 6 19 6 4 4 17 8 4 2 16 3 3
| Box 7 18 9 4 2 17 9 3 2 18 4 4
Table 1 - Serpent |1A-64 Metrics
AES Submission Gladman (Best) Osvik
Ops | Cycles| Tmps Ops | Cycles | Tmps Ops | Cycles | Tmps

SBox 0 18 11 15 8 2 17 9 2

SBox 1 18 11 3 14 8 2 17 9 3

SBox 2 16 11 4 16 9 3 14 8 3

SBox 3 18 9 4 16 9 3 17 9 3

SBox 4 19 10 6 15 8 3 19 10 1

SBox 5 17 9 4 16 9 3 18 9 1

SBox 6 19 10 4 15 9 3 17 10 2

SBox 7 19 10 3 17 12 5 19 10 2

1 Box 0 19 10 4 15 10 2 18 11 2

1 Box 1 18 10 3 17 9 & 18 11 2

1 Box 2 18 10 3 16 9 2 18 10 2

1 Box 3 17 3 17 9 4 17 9 1

| Box 4 17 5 17 9 4 19 11 2

1 Box 5 17 4 16 8 4 18 10 2

| Box 6 19 10 5 17 9 3 16 2

| Box 7 18 9 3 17 10 2 18 9 2

Table 2 - Serpent PA-RISC Metrics

11

AES Implementations & Performance

Twofish

The Twofish block cipher employs a “ Feistel-like structure with additional whitening of the input and output.”Ia The 128-bit
plaintext block is split into four 32-bit words. In the input whitening step each 32-bit word is XORed with a different 32-bit input-
whitening key. This is followed by 16 rounds in which the left two words are transformed by the F-function. The leftmost word
produced by the F-function is X ORed with the third word, and the result is rotated to the right by one bit. The rightmost word produced
by the F-function is X ORed with the fourth word, which previously had been rotated to the left by one bit. For all but the 16 round, the
left and right pairs of words then are swapped for the next round. Each of the final four words is XORed with a different 32-hit output-
whitening key.

Within the F-function, the first input word is transformed by the g-function. The second input word first is rotated to the left by
eight bits, and then transformed by the g-function. The two g-function outputs then are mixed into two new words by a Pseudo-
Hadamard Transform (PHT). After mixing, a different round key is added to each of the two new words, producing the two output words
of the F-function.

The g-function may be implemented in a variety of ways, depending upon one's choice of keying strategy. Twofish defines five
different keying strategies: Compiled, Full, Partial, Minimum, and Zero. These choices enable a wide range of time/memory trade-offs
for a Twofish implementation.

For RISC and EPIC microprocessors, the choice of Full keying is the most natural. Full keying requires 4096+128+32 = 4256 bytes
of table for the four key-dependent S-boxes, 32 round keys, and eight whitening keys. This table size poses no problem for a modern
computer platform. Compiled keying is able to reduce the Twofish Pentium-Pro encryption time from 315 cycles to 258 cycles, but it
necessitates a separate copy of the encryption and decryption codes for each different key. For superscaar RISC and EPIC
microprocessors, Compiled keying is unlikely to result in a performance gain. Given sufficiently many general registers, key loading
always can be overlapped and executed in parallel.

The heart of the Twofish g-function is defined as:

1. Partition the 32-bit input word into four 8-bit bytes.

2. Use the value of each of the four bytes to index and fetch a new byte value from a corresponding, 256 byte, key-

dependent S-box.

3. Matrix multiply the MDS matrix, a predefined, maximal distance separation byte matrix by the vector of the four

bytes fetched from the S-boxes. Scalar multiply of bytes in GF(2®) is represented as GF(2)[x] modulo v(x), where
v(x) is the primitive polynomial x8+x®+x>+x3+1. Scalar addition of bytesin GF(2%) is XOR.

For Full keying, each of the four S-boxes contains 256 32-bit words, rather than 256 8-bit bytes. Each 32-bit word of S-boxsy[i] is
the four-byte vector computed by matrix multiplication of the MDS matrix by the four-byte vector whose sole non-zero component is the
byte S-boxg[i]. If we denote matrix multiplication by +.x, and the bytes of a column vector, least significant byte first, as[B0:B3] or [BO,
B1, B2, B3] the 32-bit S-boxes are:

S-box0szz[i] = MDS +.x [S-boxOg[i], 0, 0, O]
S-boxlsz[i] = MS +.x [0, S-boxlg[i], 0, 0]
S-box2z[i] = MS +.x [0, 0, S-box2g[i], 0]
S-box3z[i] = MS +.x [0, 0, 0, S-box3g[i]]

In this manner, all GF(2®%) byte multiplications of the g-function MDS matrix multiply are pre-computed, and saved in the 32-bit
S-boxes. With these S-boxes, al that is required for a g-function MDS matrix multiplication is to fetch a 32-bit word from each of the
four S-boxes and XOR the words together. Therefore, the Full keying computation of the g-function consists of extracting four 8-bit
bytes from the input word, using each extracted byte to index and fetch a 32-bit word from a corresponding S-box, and X ORing the four
fetched words. The rotation by eight bits of the right input word to the F-function actually requires no explicit computation. It is
accomplished simply by the order in which 8-bit bytes are extracted from the input word. Similarly, no computation is required for word
Swapping between rounds.

Keying

Full keying for a Twofish 128-hit user-supplied key proceeds in three phases. In each phase the approach taken utilizes modestly
sized tables to accelerate the performance. The user-supplied key is taken as four 32-bit words, in little-endian byte order. These words
are caled Mg, M1, M5, and M3. Their byte contents, respectively are: [mo:mg], [ma:m7], [mg:my1], and [m2:mys], where my is the i'th
byte of the user-supplied key.

In the first phase of keying, two four-byte vectors denoted S, and S; are derived from the user-supplied key. These vectors are
utilized in the computation of the S-boxes. S, and S; each are computed by a matrix multiplication of the RS matrix by an eight-byte
vector of user-supplied key bytes. The 4x8 RS matrix is derived from a Reed-Solomon code, and is specified by the Twofish definition.
Specifically:

So = [RS] +.x [my: ny] Si= [RS] +. x [ny: ms]

For the RS matrix multiplication, scalar multiply of bytes in GF(2®) is represented as GF(2)[x] modulo w(x), where w(X) is the
primitive polynomial x®+x%+x3*x?+1. Scalar addition of bytes in GF(2®) is XOR. The actual computation of these two matrix
multiplications is accomplished by simulating the LFSRs for the RS code. Doug Whiting programmed this in the following manner in
the original Twofish submission.

8 Schneier, Kelsey, Whiting, Wagner, Hall, Ferguson, The Twofish Encryption Algorithm, John Wiley & Sons, 1999.
12

AES Implementations & Performance

#def i ne RS_GF_FDBK 0x14D /* field generator */
#def i ne RS _rem(x) \
{ BYTE b = x >> 24; \
DWORD g2 = ((b << 1) ™ ((b & 0x80) ? RS _G-_FDBK : 0)) & OxFF; \
DWORD g3 = ((b >> 1) & Ox7F) ~ ((b & 1) ? RS_GF_FDBK>>1 : 0) ~ g2; \
X = (X << 8) ™ (g3 << 24) N (g2 << 16) ™ (g3 << 8) ™ b;
}
Sy and S; then can be calculated by the following triply-nested loop, where M i] denotesM; and S[i] denotes S:
for(i =0; i <2; ++i) {
for(j =0, r=0; j < 2; ++) {
r A= (j) 2 Mi*2] : Mi*2+1];
for(k = 0; k < 4; ++k) {
RS rem(r);
}
Sli] =r;
}

The calculation of Sy and S; can be accelerated by using a pre-computing a table of 32-bit words, RSt bl [256], where
RStbl[i] =RS_pren(i). RS prem(x) isidentical to RS_rem(x) but without the (x << 8) term in the fina assignment
statement. Each cycle of the LFSRs then may be simulated simply by:

unsi gned int x;
#defi ne RS rem(x) x = (x << 8) ™ RSthl[x >> 24];

The triply-nested loop to compute Syand S; is completely unrolled. Housekeeping instructions may be executed in parallel with this
computation.

The second phase of keying is to compute the four key-dependent S-boxes. Four pre-computed, 256 entry, 32-bit word auxiliary
tables are utilized to accelerate this computation. These tables, denoted MDO, MD1, MD2, and MD3, are similar to the Full key S-boxes.
Two additional 256 entry, 8-bit tables are required for the S-box computation. These are the tables containing the basic g0 and g1 byte
permutations defined in the Twofish specification. These tables are denoted g0 and q1. Each auxiliary table entry combines the final
g0 or g1 byte permutation of the S-box computation, and the MDS matrix multiplication. Specificaly :

MO[i] = MS + x [gl[i], 0, 0, 0]
MDL[i] = MDS +.x [0, qO[i], O, O]
M2[i] = WMS + x [0, 0, ql[i], O]
MD3[i] = MS +.x [0, 0, 0, qO[i]]

This is the same matrix multiplication used in the g-function. Each Full key S-box contains exactly the same 32-bit words as the
corresponding auxiliary table, but permuted according to the user-supplied key. |If we designate the bytes of the words S§; and S; as
S0(3:0) and S1(3:0), byte zero being least significant, the Full key S-box computation loop is:

for(i =0; i < 256; ++i
S-box0s2[i] = MDO[qO[gO[i]~S0O(0)] ~ S1(0) 1;
S-box1s[1] = MDL[qO[gl[i]~SO(1)] ~ S1(1) 1;
S-box23[i] = MD2[ql[gO[i]~S0(2)] "~ S1(2) 1;
S-box3s3[i] = MD3[ql[ql[i]~S0(3)] ~ S1(3) 1;

}

This computation further can be accelerated by yet another, 256-entry, auxiliary 32-bit word table. Thistableiscaled g0qlg0ql.
Thei'th entry of thistableconsistsof [qO[i], ql[i], qO[i], ql[i]]. Thewordq0qlqOql[i] can befetched by asingle
instruction, and can be XORed with S,. This computes the inner XOR of all four assignment statements in parallel. Each byte of this
intermediate result then is used to fetch a byte from g0 or gql. Following one more XOR with the corresponding byte of S; the S-boxs,
entry is obtained by indexing and fetching the 32-bit word from the proper MD table. Thisword is stored into the proper 32-bit S-box.

The code to perform this computation is organized as a 256-pass loop for both PA-RISC and 1A-64. The S, and S, words aready
reside in general registers. Foreach loop iteration, the required operations are one indexed load for the q0glq0qgl table entry, a word
XOR with Sy, four byte extracts”, four indexed byte loads from the g0 and g1 tables, four XORs with S, bytes, four indexed word loads
from the MD tables, four indexed word stores to the S-boxes, and a loop closing instruction. For 1A-64, eight additional instructions are
required for computing table addresses. 1A-64 post address modification is used for indexing the q0qlg0ql table and the S-boxes.

The total number of 256-entry tables used to accelerate the computation of S, S;, and the key-dependent S-boxes is eight,
occupying 6656 bytes. These table sizes are quite acceptable for a modern RISC or EPIC platform. No 1A-64 bank optimization was
done for these tables® No additional tables are required for the third phase of keying.

1. qo0 256 bytes

2. ql 256 bytes

3. q0glgqOgl 1024 bytes

4. MDO,...,MD3 1024 bytes each, 4096 bytes total
5. RSthl 1024 bytes

" Thefour S; byte extracts are done outside the loop.
8 Described in the next section.

13

AES Implementations & Performance

The third and final phase of keying is the computation of the 40 whitening and round keys. This code is similar to the computation
of the S-boxes. It isorganized as a 20-iteration loop, in which two keys are computed per iteration. Unlike the S-box computation, each
key requires a full MDS matrix multiply. Further, a final PHT transform is applied to each pair of keys. The Twofish definition
systematically uses the same MDS matrix multiply and PHT operations in the keying algorithms and in the encryption and decryption
algorithms.

The same table techniques used above are used to accelerate computation of the whitening and round keys. The initia eight of the
40 keys are taken as the input and output whitening keys. The final 32 keys are taken as the round keys. Using the previously defined
notations, and K to denote the newly computed keys, the computation for the 40 whitening and round keysis:

for(i =0; i <40; i +=2) {

T0 = MXO[qO[qO[i]~M(0)] ~ MX(O)];
TO "= MDL[qO[qlf[i]~M2(1)] ~ MD(1)];
TO "= MD2[qli[qO[i]~M(2)] ™ MX(2)];
TO "= MB[ql[ql[i]"M(3)] ~ M(3)];
T1 = MDO[qO[qO[i+1]~MB(0)] ~ ML(0)];
T1 A= MDI[qO[qi[i+1]~MB(1)] ~ ML(1) |;
T1 A= MD2[qi[qO[i+1]~MB(2)] ~ ML(2) |;
T1 A= MD3[qi[qi[i+1]~MB(3)] ~ ML(3) |;
T1 = (Tl <<< 8);

TO += T1;

T1 += TO;

T1 = (Tl <<< 9);

K[i] = TO;

Kli+1] = T1;

}

The code to perform this computation is organized as a 20-pass loop for both PA-RISC and |A-64. Note that the M; words are used
in even-subscript and odd-subscript pairs. Also note that the M; words are used in an order reversed from the order of the S wordsin the
S-box computation. The My M4, M,, and M3 words already reside in general registers. For each loop iteratign, the required operations
are two indexed loads for the g0glg0ql table entries, two word XORs with M, and M3, eight byte extracts®, eight indexed byte loads
from the q0 and g1 tables, eight XORs with My and M, bytes, eight indexed word loads from the MD tables, six XORs to complete the
MDS matrix multiplies, two rotates, one add and one shift-and-add for the PHT, two indexed word stores to the key array, and a loop
closing instruction. For A-64, sixteen additional instructions are required for computing table addresses. 1A-64 post address
modification is used for indexing the g0g1gq0ql table and the key array.

Encryption

For PA-RISC the encryption and decryption functions are organized as straight-line code. Each is provided two pointer arguments,
the first to the 16-byte cleartext block or ciphertext block, the second to the concatenation of the round keys, whitening keys, and four
Full key S-boxes. Input blocks are whitened 64-bits at atime. Housekeeping instructions are overlapped with the first and last rounds.

Each PA-RISC round, including the one-bit circular shifts, executesin about a dozen cycles. PA-RISC includes an instruction that
can extract any contiguous 8-bit field from a word in one cycle. The extracted byte can be used directly as an index for a 32-bit word
load instruction. Further, the PA-RISC shift-and-add instruction permits the PHT to be done in two instructions during the same cycle.
Thus, each round needs 32 instructions: eight extract instructions (ext r w, u), eight instructions to load from S-boxes (I dw, s), two
instructions to load round keys (I dw), two one-bit circular shift instructions (shr pw), eight XOR instructions (xor), three add
instructions (add, |), and one shift-and-add instruction (shl add, |). The instruction schedule is nearly optimal, but the final right
rotate by one bit adds one cycle to the round.

For IA-64 the encryption and decryption functions are organized in exactly the same way. In each round, an additional instruction
is required to compute an S-box address from each extracted byte. Although this requires eight additional instructions, there also is an
added benefit. Microprocessor caches often are organized as independent 8-byte banks. An optimal memory strategy, therefore, shuffles
the four S-boxes, so that each S-box is entirely contained in a single cache bank. This results in a 16-byte stride between successive
S-box words. The 1A-64 shift-and-add instructions, used to compute S-box addresses, therefore, use a shift value of four. This assures
the absence of cache bank conflicts when executing two S-box loads during the same cycle.

A second technique employed for 1A-64 is computational height reduction, a practice common for parallel instruction issue
machines. Additional instructions are executed, but the entire computation completesin fewer cycles.

In Twofish, the rightmost bit of the first F-function output becomes the high order bit of a byte to be extracted in the next round.
For PA-RISC, the fact that the extract instruction demands a contiguous bit field requires that the one-bit right rotate be done after
computation of the first F-function output and prior to the extract for the next round. For 1A-64, parallelism and predicates offer a better
solution.

The first F-function output is computed as three XORs, two adds, and a final XOR. Although these operations do not commute or
freely associate, they in fact do so for the rightmost bit, which actually is the result of six XORs. By computing the rightmost bit of the
last XOR sooner (round-key XOR third-block-word), one redundantly can compute the rightmost bit of the first F-function output one
cycle earlier. This permits the rightmost bit also to be tested without adding a cycle to the round. The result of the test is written to a
predicate. This predicate then is used to set a temporary S-box pointer either to the beginning, or to the hafway point, of the
corresponding S-box at the start of the next round. Only the seven leftmost bits of the unrotated first F-function output are extracted in

® The eight M, and M, byte extracts are done outside the loop.
14

AES Implementations & Performance

the next round. They then are used as an index relative to the temporary pointer. The full first F-function output word can be rotated
later.

It also turns out that, with proper table alignment, height reduction can be used to compute two S-box addresses one cycle earlier in
the next round. The enabling fact here is that offsets into S-boxes consist of 12 bits, of which the right four are zero. For a 4096-byte
aligned and shuffled table, an XOR can be used for the address calculation. The terms for two such XORs redundantly can be computed
in the previous round. This can be seen from the following equations for one pair of encryption terms (note: [7:0] denotes the rightmost
8 hits of aword):

Let: PHT.be the second PHT output for the current Round.
RK; be the second Key word for the current Round.

BW be the fourth Block word for the current Round.

Fi nq be the second input word to the next Round.

PSB1 be the pointer to S-box 1.

pSBE be the pointer to the S-box 1 entry for Finl[7: O].lﬁ-I

Fing = (PHT1+RK;) O BW
pSBE = pSBL + 16*(Fini)[7:0]
= pSBL + 16*((PHT:+RK;) O BW)[7:0]
= pSBL + (16*(PHT:+RK;)[7:0] O 16*BW[7:0]) o
= pSBL O (16*(PHT1+RK;)[7:0] O 16*BW[7:0])
= (pSB1 O 16*BW[7:0]) O (16*(PHT1+RK:)[7:0])
Performance
Cycles Pentium PA-RISC IA-64 1A-64++
Min Average Max
Keying 8414 2846 2901.79 2964 2445 2445
Encryption 315 205 217.45 233 182 182
Decryption 311 200 210.29 224 182 182

On PA-RISC, Twofish keying executes in 2846 cycles, compared to the best-reported Pentium results of 8414, a 2.96:1 performance
advantage. Encryption and decryption aso run faster: a 36% advantage for encryption (205 vs. 315) and a 35.7% advantage for
decryption (200 vs. 311).

On 1A-64, Twofish executes even faster. Twofish keying executes in 2445 cycles, compared to the best-reported Pentium results of
8414, a 3.44:1 performance advantage. Encryption and decryption also run faster: a 42.2% advantage for encryption (182 vs. 315) and a
41.5% advantage for decryption (182 vs. 311).

10 5 hox 1 is used for the rightmost bits because of the logical (Fin, <<< 8).
1 Addition is equivalent to exclusive-or because of the S-box table alignment.

15

AES Implementations & Performance

Conclusions

All the algorithms have reasonable implementations on PA-RISC and |A-64; all make good use of the architectures. It is clear that
the underlying computer architecture has a direct and significant effect on the optimal implementation for each candidate. The large
register files in PA-RISC and 1A-64 enable complete state to be kept without using memory, influencing the structure of Rijndadl,
Twofish, and keying codes. The choice of equations for Serpent is a direct result of the available execution width and ALU operations.
Sometimes, effects are expressible only at the assembly level, such as the software pipelines in the Mars keying or the MMU
multiplication in RC6 encryption. In other cases, algorithm structures to exploit the underlying architecture are best expressed in high
level source, such as the restructuring of the RC6 keying algorithm.

Our second conclusion is that algorithm performance cannot be measured by a single number. A complete performance
characterization must filter out large system effects such as caching, memory latencies, interrupts, paging, process swaps, and 1/0
activity, but should draw attention to fine-grain system effects such as cache interference and execution latencies. When timing keying
for random input key values, the results will exhibit a performance distribution rather than a single number.

Another consideration is parallelism. Future CPU’s will be increasingly, and we believe explicitly, parallel; algorithms that can
exploit parallelism will see continuing performance improvement over the life of the new AES agorithm. It should be observed that as
better Serpent equations are developed, Serpent will further improve both its performance and parallelism. A final factor in evaluating
software is memory usage; none of the finalists use tables uncomfortably large for modern server and desktop systems.

Using these criteria, and assuming that the |A-64++ additions will/will-not be made, the results of this study rank the AES finalists
asfollows:

Performance Memory Parallelism
Rijndael RC6 Rijndael
RC6/Twofish Serpent Twofish
Twofish/RC6 Mars Serpent
Mars Twofish Mars
Serpent Rijndael RC6

Acknowledgments

We wish to express our thanks to Doug Whiting for his unerring guidance, especialy his prescient counsel in the selection of first-
round candidates to investigate. We also wish to thank and to acknowledge the contributions of Dr. Brian Gladman, whose work is well
known and appreciated by the AES community. Brian's codes were used to generate test values and, in many instances, improved our
understanding of the algorithms. Brian also kept us up to date on his Pentium performance improvements. We appreciate Rohit Bhatia's
suggestions for 32x32 multiplies. Dag Arne Osvik contributed his Serpent equations, which forced our equation analysis tools to
improve and sped up both the PA-RISC and the | A-64 Serpent implementations.

We are indebted to John Crawford and members of the Intel Itanium team, who provided access and support for the Itanium
simulator. Finally, our thanks go to the Hewlett Packard Ft. Collins McKinley team, whose assistance with the development and
simulation tools, and patience with our endless questions, was the sine qua non of the | A-64 work.

16

AES Implementations & Performance

Appendix A:
Summary of Best Performance
Candidate Encryption Decryption Keying
Clocks| Ops | IPC | Regs |Bytes |Clocks| Ops | IPC | Regs |Bytes |Clocks| Ops | IPC | Regs |Bytes
Mars
Pentium 320 374 3894
New Keying 2128
PA-RISC 540 | 631 | 1.17 |12(18)| 2588 | 538 | 632 | 1.17 |12(18)| 2592 | 1969 | 2908 | 1.48 | 20 | 2584
New Keying | 538 | 631 | 1.17 |12(18)| 2588 | 537 | 632 | 1.17 |12(18)| 2592 | 1797 | 1805 | 1.00 | 20 | 1984
1A-64 511 | 1013 | 1.98 | 18//8 | 784 | 527 | 1013 | 1.92 | 18//8 | 784 | 1903 | 3332 | 1.75 |14//48| 1344
New Keying 1408 | 3132 | 2.22 |12//16| 976
IA-64++ 255 271 1313
New Keying 1408
Table Sizes 2048 2208 2208
Alg Parallelism 2.0 2.0 3.0
RC6
Pentium 243 226 1632
PA-RISC 580 | 577 | 0.99 | 12(4) | 2308 | 493 | 558 | 1.13 | 12(4) | 2232 | 1077|1519 | 1.41 | 12 | 760
1A-64 490 | 826 | 1.69 |4/27/8| 480 | 490 | 826 | 1.69 [4/27/8| 528 | 1581 | 2629 | 1.66 | 8//56 | 256
IA-64++ 150 130 1057
Table Sizes 0 176 176
Alg Parallelism 2.0 2.0 2.0
Rijndael
Pentium 284 283 1338
PA-RISC 168 | 537 | 3.20 | 24 |2160| 168 | 539 | 3.21 | 24 |2160| 239 | 686 | 2.87 | 28 | 2800
Fwd Keying 85 | 228 | 268 | 19 |1504
1A-64 125 | 704 | 5.63 [20/12| 3808 | 126 | 706 | 5.60 |20/12|3824 | 148 | 822 | 5.55 |24/21| 4480
Fwd Keying 104 | 282 | 2.71 | 19 | 1504
IA-64++ same same same
Table Sizes 8192 8368 8368
Alg Parallelism 10.0 10.0 10.0
Serpent
Pentium 900 885 1301
PA-RISC 580 | 1273 | 2.19 | 17 |5100| 585 | 1309 | 2.24 | 17 |5240| 668 | 1409 | 2.11 | 19 |5640
1A-64 565 | 1517 | 261 | 24 |8480| 631 | 1546 | 2.45 | 24 |8848| 475 | 1527 | 3.21 | 22/4 | 8368
IA-64++ 468 407 380
Table Sizes 0 528 528
Alg Parallelism 3.0 3.0 4.0
Twofish
Pentium 315 311 8414
PA-RISC 205 | 548 | 2.67 | 20 |2192| 200 | 548 | 2.74 | 20 |2192]| 2846|8904 | 3.13 | 30 |1324
1A-64 182 | 927 | 5.09 | 23 |5184 | 182 | 915 | 5.03 | 23 |4960 | 2445 | 9561 | 3.91 |26/21 | 1600
IA-64++ same same same
Table Sizes 6656 4256 4256
Alg Parallelism 6.0 6.0 4.0

Notes:

-- Twofish times for Full keying are from: The Twofish Encryption Algorithm, John Wiley & Sons, 1999.
-- Pentium, Alpha clocks are lowest reported clocks from the NIST Round 1 Report, August 1999.
-- Regs = GRs, or statics/stacked, or statics//rotating, or statics/stacked/rotating, or GRs(FRS) registers.
-- Bytes are object code sizes. Table Sizes are total tables for keying, key table plus look-up tables for
encryption and decryption.
-- Alg Parallelism is an estimated integral upper bound for software parallelism.

17

-- IA64++ is a hypothetical IA-64 implementation — refer to the text for details. It does not represent any current
or planned 1A-64 implementation.

AES Implementations & Performance

Appendix B: MarsKeying
Original Implementation

The original Mars keying initializes the first seven elements of an array, T[- 7. . 39] , to the first seven entries of the Mars S-box,
then sets the rest of the array as follows:
TLi]l = ((T[i-7] O T[i-2]) <<< 3) OK[i mod N O i i =1... 38
T[39] = N
wherek istheinput key and Nisthe size, in words, of the input key. This recurrence has an active state of seven words, A, B, ..., G
such that the expansion can be rewritten:

T[0] =A=((A0OF <<< 3) OK[0O] OO
T[1] B=((BOG <<< 3) OKk[1] O1
T[2] C=((COA <<< 3) OK[2] O2
T[3] =D=((D0OB) <<< 3) OK[3] O3
T[4 =E=((EOC <<< 3) OK[0] O 4
T[38] = D= ((D0OB) <<<3) OKk[2] O38
T[39] = N

where A isinitialized to S[0] , B to §[1], and so forth. When key expansion is complete, the data words are then “stirred” seven
times as follows:
T[] (T[i] + S[T[i-1] & Ox1ff]]) <<< 9 i =1... 39
T[0] (T[O] + S[T[39] & Ox1ff]]) <<< 9
It is possible to overlap the first stirring with the key expansion: after the first eight expansion steps, T[1] is no longer involved in
the expansion recurrence and can therefore be stirred. This requires adding one extra word to the expansion state so that both T[i] and
T[i - 1] areavailablefor stirring. After the stirring, the keys are reordered, mapping T[i] - K[7i nod 40]

PA-RISC

The PA-RISC implementation uses straight-line coding for the expansion/stir phase, rotating the key words each step. The
remaining six stirring passes are executed in a loop as per the specification. The reordering, however, is again straight-line code. If
reordering is considered as replacement rather than a permuted copy, the replacements form chains, that is:

1] - T[7] - T[9] - T[23] - T[1]

There are 8 chains of four, 3 chains of two, and two chains of one (T[0] - T[0] and T[20] - T[20]). Since PA-RISC can issue
two memory operations per cycle but can retire only one store per cycle, the optimal ordering loads from one chain, then interleaves the
stores with the loads from the next chain. The expected performance is 40 cycles, which is the number of times a multiple cycle loop
would have to run to perform the same task. It also eliminates the need for atemporary key array: the target key array can be used for all
intermediate values.

I1A-64

The IA-64 Mars keying implementation takes advantage of the large register files, rotating registers, and rotating predicates. The
routine allocates a 48-register stack frame, all of which are rotating. The initial register usageis as follows:

r32-r34 r35 r36 r37 r38 r39 rd40 r41 r42 r43 r44 r45 rd46 r47 r48 r49 r50-r79
Unused | ke [ke [o [ko [ko | T [T [To [Ta [Ta [Tis [Tie [Te | A | B | T[10.39] |

The first nine computations simply initialize T; and rotate registers to the right. After that, the registers A and B contain the first two
values for stirring. Unlike PA-RISC, this phase of the computation is enabled by the rotating predicates, where a ‘1’ is shifted in each
time through the main body of the loop. To circulate the key words, k, — ky at the end of the loop. When the initiaization phase of the
loop is finished, the loop switches to the epilogue phase, which now shifts a ‘O’ into the rotating predicates, which disables the
initialization instructions. Thus, the entire expansion/mix phase executes in one loop that runs 48 times, 6 cycles per loop.

When the first phase is finished, the intermediate key values are in the rotating registers, withr 39 =T[0] ,r38 =T[1], ...,r32
=T[7],r79=T[8], ..., r48 = T[39] . This allows the stirring phases to compute on the rotating register file. Since the registers
rotate 39 places during the stirring loop, the registers used in each phase are:

Pass T[] T[i-1] T[O] (Fi nal)
2 r39 r38 r78
3 r78 r77 re9
4 re9 re8 re0
5 re0 r59 r51
6 r51 r50 r42
7 r42 r4l r33

The reorder is efficiently handled in atwo cycle loop. In the first cycle, the key word is stored, the data pointer incremented seven
words, and alook-ahead target index counter is tested for overflow and incremented. In the second cycle, the index and data pointers are
adjusted if the index had overflowed in the previous cycle.

18

A conparison of AES candi dates on the
Al pha 21264

Ri chard Wi ss Nat han Bi nkert

VSSAD Labs Conput er Sci ence Dept
Conpaqg Conput er Corp, Uni versity of M chigan
334 South St Ann Arbor, M
Shrewsbury, MA 01545 bi nkert n@inm ch. edu

Ri char d. Wi ss@Conpag. com

ABSTRACT

We conpare the five candidates for the Advanced Encryption Standard based on
their performance on the Al pha 21264, a 64-bit superscal ar processor. There are
several new features of the 21264 that have a significant inpact on
encryption/decrypti on speed. The main ones are greater potential for
instruction-level parallelism(ILP) and larger level 1 cache. The ILP cones
fromthe fact that the 21264 can issue four integer instructions per cycle. W
envi sion that for high-performance servers, there will be multiple streans of
data for encryption or decryption. The type of parallelismthat we consider in
this paper is the encryption of nmultiple, independent blocks interleaved in the
same code | oop running on the sane processor. This benefits sonme al gorithns
nore than others. R jndael and Twofish turn out to be the fastest for a single
block at a tine, but RC6 is potentially the fastest when processing two bl ocks
at a tine. The reason for this is that out-of-order execution together with an
i ssue width of four can be used to hide the latency of integer multiplies.

| nt roduction

The new AES algorithns will be used on a wide range of CPU s. The Al pha

21264 is a good representative of a 64-bit R SC architecture. |Its features

i nclude a 64K two-way set associative level-1 cache, the capability to

i ssue 4 integer instructions each cycle, and out-of-order execution. Since
the Alpha is nost likely to be used in servers, it will probably be used

for encrypting or decrypting multiple streans of data sinultaneously. This can
be done on nmultiple processors, but it is also relevant to | ook at the
efficiency of processing nore than one bl ock sinultaneously on each processor
t hus increasing the throughput of the system In the remainder of this paper
we will use the termnultiple streamor multistreamto refer to nore than one
bl ock on the sane processor. Most of the studies so far have | ooked at single
stream performance, where latency is the dom nant factor. |In order to get
optimal nultistreamperformance, it will be necessary to harness the ful
bandwi dt h of the processor. The five candi date AES al gorithms have different
conput ati onal requirements, and therefore have different behavior with respect
to nultistreamthan single stream

We illustrate the nultiple stream scenario with an exanple, so that there is no
anmbiguity. Consider the followi ng assenbly | anguage fragment froma | oop for an

i magi nary processor that can issue two instructions per cycle, at npbst one of
whi ch can be a multiply:

| oop:
1. Load 9[0] # | oad key
2. T = Mll A*A
3. Load 9] 1] # | oad key
4. U= Mll B*B
5. C= Shift _right T
6. D=Shift_left T
7. E=Shift _right U
8. F =5hift_left U
9. C=CO D
10. E=EO F
11. B = C Add S[0]
12. A = E Add S[1]
13. Br |l oop
The processor will execute two instructions per cycle except for the branch. |If

the | atency of each instruction were one cycle, then the whol e code woul d take
seven cycles. However, if the latency of a multiply is seven cycles and at nost
one can be issued in a given cycle, then there is a five cycle stall after the
fourth instruction. Therefore, the execution tinme increases to 12. Now

consi der what we can do for two i ndependent bl ocks of data:

| oop:
Load S1[0] # | oad keyl
T1 = Ml Al*Al

Load S1[1] # | oad keyl
Ul = mull B1*B1

C2 = Shift _right T2

D2 = Shift_left T2

E2 = Shift_right U2

F2 = Shift_left U2

2= O D2

E2 = E2 O F2

B2 = C2 Add S2[0]

A2 = E2 Add S2[1]

Load S2[0] # | oad key2

T2 = Mull A2*A2

Load S2[1] # | oad key2
U2 = Mull B2*B2

Cl = sShift_right T1

DL = shift_left T1
El = Shift_right U1
F1 = sShift_|left Ul
Cl=CLOo D

El = E1 O F1

Bl = C1 Add S1[0]

Al = E1 Add S1[1]

Br 1 oop

The conbi ned | oop can process two blocks in only 13 cycles. The processing of
the two bl ocks can be overlapped in such a way that while the shift operations
for one block are waiting for the multiplies to conplete, operations on the

ot her block can proceed. For the 21264, the latency for a nultiply is actually
seven, and the latency of a load is three or nore, depending on whether or not
the value is in the D-cache. The 21264 can issue up to four integer
instructions in one cycle, at nost two of which can be |oads. The out-of-order
processing capability is not actually used if the conpiler schedul es the
instructions to take into account the latency. It should be noted that future
generations of Al pha processors will have simultaneous multithreadi ng (SMI),
which will elimnate the necessity of the programmrer/conpiler merging two
streans of data in one instruction stream

The key to taking advantage of the full issue width of the Al pha is recognizing
when a program has a | ow nunber of instructions per cycle (ipc). In the above
exanpl e, this was caused by the long latency of the nmultiplies, but there may be
ot her cases where this happens. For exanmple, in the inplenentation of Serpent
that we used, there were | ong chains of dependent |ogical operations, which
resulted in an ipc of slightly less than two. Thus, Serpent can achieve a
speedup of al most two by processing two streans. RC6 is sinmlar to the exanple
above in that the multiplies introduce |atency, which reduces the ipc to a |eve
for which processing two streans works well. On the other hand, Rijndael
Twofi sh and Mars do not |end thenselves to this approach. They can be coded
efficiently for single streamso that the table | ookups can be overl apped with

the other conputation and the ipc is well over two. It should be noted that an
i pc of greater than two does not preclude nmultistream processing, but the gains
are likely to be small. Also, it is inportant to use an optim zed version of

the code, otherwise a lowipc will only reflect the inefficiency of the

i mpl enentation rather than the potential for multistreamparallelism For this
reason, we examine assenbly | anguage inplenmentations in addition to the C
ver si ons.

One of the architectural features that is missing fromAl pha is the 32-bit
rotate. This requires several instructions to ermulate. A fixed rotation
requires two shifts an “and” and an “or”. These can be executed in two paralle
chains and in the absence of other parallelismthey have an i pc of two.

The next section presents an anal ysis of each algorithmin terns of ipc for a C
i mpl enentati on and for an assenbly code inplenmentation

Anal ysis of Al gorithns

Qur goal is to get a quick estimate of the performance for nultistreamdata. W
do this by checking the timngs for the d adman C inpl enmentati ons of the five
candi date algorithnms for single streamdata and estimating the ipc. Then in sone

cases, we also | ook at assenbly | anguage inplenentations to see if the ipc could
be increased. While a high ipc will rule out a gain frommultistream a low ipc
does not guarantee one. A range of techniques was used froma conplete

i npl enentation in assenbly |anguage in the case of Rijndael, to coding a single

round in assenbly | anguage for Rc6 and Twofish, to a data dependency anlysis for
Mars and Serpent. The data dependency anal ysis together with instruction

| atency was used to estimate optimal tinmes for the last two algorithms. 1In the

one case where we did an assenbly | anguage inplenentation, the time for this was
conpared with our estimate. Finally, we estimated the gains for nultiple stream
i mpl enent ati ons.

Mar s

The Mars al gorithm has three phases: sinple arithmetic and | ogi cal operations,
tabl e | ookup and rotations. The table |ookup, which is nixed with sone fixed
rotations has a four-fold parallelism This seenms to be the reason for a high

i pc, and therefore little gain fromnultistream Since the Al pha does not have
a 32-bit rotate, this increases the nunber of instructions. For this reason,

it is both one of the fastest algorithms on a Pentium Pro but one of the sl owest
on the 21264.

RC6

RC6 turns out to be a lot nore efficient on the Al pha 21264 t han expected

from observing the number of cycles for a single block of data. For single

st ream performance, each round when coded in assenbly | anguage, takes 18 cycles
and there are 20 rounds. |If we allow 20 cycles for setup, this gives a total of
380 cycles per block. This is amazingly close to the current reported figure of
382 cycles per block for the optinized C version. A single round of encryption
for two i ndependent bl ocks of data sinultaneously was al so coded in assenbly

| anguage for an estimted 21 cycles, which is less than 11 cycl es/block. For 20
rounds, this would be 210 cycles/block plus the time for setup and storing
results. This is as fast as Rijndael, and is potentially nore consistent since
it uses multiplication, which have a fixed |atency, and does not depend on table
| ookups which could suffer occasional cache msses. |In addition, if the

al gorithmwere used with a word size of 64, this could potentially double the

t hr oughput, since the 64-bit versions of the operations nultiply, xor, add and
rotate are as fast or faster than the 32-bit versions on Al pha processors.

Ri j ndae

The sinplicity of the Rijndael algorithmmmakes it easy to analyze. W were able
to produce an efficient inplenentation in assenbly code together with timng
results. The mmjor conmputational cost for this algorithmis accessing the | ook-
up tables. This can be done in three instructions: extract byte, add to base
address, and | oad the value. For Alpha, this is relatively fast, since the
tables fit in the level-one cache. ldeally, one round of Rijndael could be done
in 18 cycles: however, in practice, this requires tuning the code to elimnate

| -cache m sses, D-cache misses, etc. Wat we observed was that the code took
246 cycl es/ bl ock when executed repeatedly. This is about 23 cycles per round.
This was the fastest algorithmwe have observed for 128-bit key | ength. However,
since the nunber of rounds for Rijndael depends on the key length, this is not
the fastest for all applications.

We expect the Rijndael algorithmto scale well with future processors since

t he makeup of the code is such that one quarter of the instructions are | oads.
The Al pha 21264 can issue four integer instructions per cycle, and there is a
four-fold parallelismfromthe four S-boxes. However, this gives it a high ipc
and neans that there is little gain fromnultistreaming. A single round of

Ri j ndael takes 18 cycles. The setup and exit code adds another 30 cycles to the
total to give approximtely 210 cycles per bl ock

Ser pent

Based on the C-code fromBrian d adman, this algorithmis the slowest. However,
it speeds up very well with nultistreaming. The S-boxes are inplenmented by
sequences of bit-parallel |ogical operations. Due to data dependencies in this
code, the ipc is slightly less than two. The technique for estimting the two
stream performance was to nodify the C code. Each round is conposed of three
macros: an “xor” with the key, an S-box conmputation, and a linear transform
The processing of the two streans was interleaved by repeating each macro for
the first streamwith the identical macro for the second stream The conpil er
was able further mix the instructions to elimnate stalls. Neverthel ess,
Serpent remains one of the slower algorithns because of the |arge nunber of
rounds and the | arge nunber of instructions per round. It should be noted that
nost of the operations in Serpent operate on bits in parallel. It should be
possi ble to process two bl ocks of 32-bit words by using the full 64-bit data
path. Narely, one bl ock would use the upper 32 bits, and the other block woul d
use the lower bits. There would be an extra “and” for the rotates as well as
packi ng the two words together, but the speedup could be close to 2x.

Twof i sh

Based on an assenbly | anguage codi ng of a single round, twofish perforns
approxinmately as well as Rijndael on both the 21164 and the 21264 for 128-bit
key length. Since Twofish does not require nore rounds for |arger key |engths,
its relative performance would be better for |onger keys. It can potentially do
ei ght S-box | ookups in parallel for each round. This gives it a high ipc and
small gain for multistreamn ng

Timng Results

Table 1 shows the results fromoptinized Ccode for the Al pha 21164 and 21264
processing one block at a tine. The 21164 can issue two integer instructions
per cycle and the 21264 can issue four. The results are simlar to those
publ i shed by Granboulan [Gran]. Qur timngs were all obtained by running each of
the algorithnms for key setup, encryption and decryption on a single stream of
data, one block at a time. The C-versions of these algorithns are the ones
published by dadman [d adl]. W ported themto Al pha by using the native cycle
count register and nodi fying the declarations to elinmnate alignnent errors in
the code. The basic idea is to time the execution of the encryption
(decryption) code running once, then tine it running twice. The nminimmtines
over a large nunber of iterations are subtracted to neasure the tinme to execute
the code without the startup costs. In addition, the encryption (decryption)
code is run once at the beginning to warm up the caches.

In order to relate our assenbly code estimates to the C inplenentations, we

i nked our assenbly version of Rijndael to the @ adman harness and observed an
encryption time of 280 cycl es/block. The assenbly code when executed for a

| arge nunmber of iterations took a mnimum of 246 cycles/block. This suggests
that the C++ overhead for calling some of the C or assenbly functions could be
significant.

In Table 2, we have estimated tinmng results for assenbly | anguage
i mpl enentations for some of the algorithms for single stream Table 3 shows the
estimated timng for assenbly code for processing multiple streans.

EV56 (21164) | Mars RC6 Rijndael Serpent Twofish
Ours 701c 571c 439c 984c 442¢
Granboulan 507c 559¢ 490c 998c 490c
website

EV6 (21264) Mars RC6 Rijndael Serpent Twofish
Ours 515¢ 428c 293c 854c 316¢
Granboulan 450c 382c 285¢c 855¢c 315c
website

Table 1. Timng conparison in cycles/block for C code.

EV6 (21264) Mars RC6 Rijndael Serpent Twofish

Assembly code | 375c¢ 360c 210c 570c 255¢c

Table 2. Estimated timng for assenbly code in cycl es/ bl ock.

EV6 (21264) Mars RC6 Rijndael Serpent Twofish

Assembly code | 375c¢ 210c 210c 506¢ 255¢c

Table 3. Estimated tine for assenmbly code encrypting two bl ocks
simul taneously. Tines are in cycles/bl ock.

Concl usi ons

RC6 has the nobst potential for parallelismwhen multiple streans are processed
on the sane processor simultaneously in a single thread. One reason for this is
that it relies heavily on multiplication, which itself has a | arge degree of
parallelismfor the Al pha processors. 32-bit multiplies are inherently parallel
because they operate on four bytes at the sane tine. Using 64-bit multiplication
woul d afford even nore parallelism The 21264 can issue one nultiply every
cycle. The latency of seven cycles does not limt bandwi dth for this algorithm
in multistream node. An S-box |ookup requires three instructions, and only
operates on one byte at a tine. Note that while RC6 has variable 32-bit
rotations, one of the intermediate results fromthe fixed rotation by 5is re-
used in the variable rotation

Serpent also has a large gain frommultistream processing because of the |ong
dependent chains of instructions and low ipc. However, because of the |arge
nunber of rounds and instructions per round, it still is slow

Fol | owi ng RC6 are Twofish and Rijndael, which both use 8-bit table | ookups and
linear transforns. Twofish has an advantage for |onger keys, but R jndael seens
the fastest for 128-bit keys. Based on an assenbly |anguage inplenentation of

Ri j ndael, there can be a significant difference between the estimated
performance and what can be readily achi eved/ observed by counting cycl es outside
of the algorithmfunction call. Conparing code execution with timng
estimations can have a significant anount of error.

Since our estimates for the Al pha 21264 are based on instruction |evel
paral l elismfor processing multiple streams, sinilar behavior should be
observabl e for Itanium and ot her VLIW nachi nes.

Acknowl edgenents.

W would like to thank Dr. Brian d adnan for publishing unified C

i mpl enentations of the five AES candidate algorithms. Also we thank Steve Root
for assenbly | anguage inpl enentati ons of sone of the al gorithns.

Ref er ences

[KA] Al mgui st, Kenneth. “AES Candi date performance on the Al pha 21164.
htt p: // home. cyber. ee/ hel ger/ aes/ kennet h. t xt

[@adl] dadman, Brian. “lInplementation experience with AES candi date
al gorithms.” Second AES Conference, Feb, 1999.
http://jya.coni bg/ gl adman. pdf

[@ ad2] d adman, Brian.
http://ww. btinternet.conm ~brian. gl adman/ crypt ogr aphy_t echnol ogy/ Aes/ i ndex. ht m

[Gan] Granboul an, Louis. “AES Timngs of best known inplenmentations.”
http://ww.dnm . ens. fr/~granboul /recherche/ AES/ti m ngs. htn

[SKW Schneier, B., Kelsey, J., Witing, D., et al. “Performance Comnparison of
the AES Submi ssions.”

Performance Evaluation of AES
Finalists on the High-End Smart Card

Fumihiko Sano* Masanobu Koike* Shinichi Kawamural Masue Shiba*

* Toshiba System Integration Technology Center
3-22, Katamachi Fuchu-shi, Tokyo, 183-8512, JAPAN
 Toshiba Research and Development Center
1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki, 210-8582, JAPAN
{fumihiko .sano, masanobu2.koike, shinichi2.kawamura, masue. shiba}
Q@toshiba.co. jp

Abstract. This paper reports the performance of the AES finalists,
MARS, RC6, Rijndael, Serpent, and Twofish, on the high-end smart
card that has a Z80 core with Toshiba’s arithmetic coprocessor.

1 Introduction

During the first round of AES candidate assessment, some reported the perfor-
mance evaluation of the algorithms on low-end smart cards. Their reports are
important for understanding performance of each AES candidates in memory
and computing resource-restricted environments. However, there are, so called
high-end smart cards, which are equipped with a specific hardware for acceler-
ating cryptographic processing. In general these cards are less restricted in their
resource than low-end smart cards. So, it is important for better understanding
of the AES candidates to evaluate the performance on high-end smart cards.
NIST as well expressed their interests in such evaluation in [11]. This paper de-
scribes our experience in implementing five AES finalists, and summarizes the
performances on our high-end smart card available from Toshiba[17].

The high-end smart card is substantially different from low-end one in that its
core is equipped with a crypto coprocessor. It may usually correct to say that the
amount of memory for a high-end card is larger than that of low-end one. In some
cases, however, venders supply cards with large memory amount suitable for
their specific purposes regardless of the core. Therefore, we distinguish between
high-end and low-end cards based on the type of core.

At first, we present the architectures of the core on our smart card that in-
cludes a CPU and a coprocessor architecture. Next, we describe coding rules for
our implementation and then, present experiences of five AES finalists accompa-
nied by results of 64-bit ciphers such that DES[10] and MISTY1[9] on our smart
card for reference purpose. Finally, we summarize advantages and disadvantages
for each implementation.

2 Platform

High-end smart cards available now are usually equipped with 8/16-bit micropro-
cessor and a crypto coprocessor, or accelerator for cryptographic operations[7].
To evaluate the AES finalists’ performance on high-end smart cards, we choose
Toshiba’s T6N55 chip shown in table 1. The chip is equipped with Z80 micro-
processor and a coprocessor. The coprocessor is under the control of Z80 and
it carries out arithmetic/logical operations when Z80 asks to do so. The copro-
cessor is originally designed to accelerate the large integer arithmetics. As will
described shortly, it is also suitable to accelerate some operations required to
implement AES finalists.

Table 1. Features of Toshiba’s T6N55 chip

CPU 780
ROM 48KB
RAM 1KB
EEPROM 8KB
Max. of Modulus 2,048-bit
Internal Clock Frequency| 5MHz

2.1 Z80 Architecture

The Z80 is a famous 8-bit architectured microprocessor developed by ZiLOG[15].
It has an 8-bit accumulator and a flag register, six 8-bit general-purpose registers,
two 16-bit index registers, a stack pointer (SP), and a program counter (PC).
An accumulator A and a flag register F' can be paired and dealt with as if it
is a 16-bit register AF. Similarly, 8-bit registers can be paired with particular
registers as BC, DE, and HL. Z80 incorporates dual register banks. Each register
bank has each register sets such as an accumulator, a flag register, and six 8-bit
registers. Note that one can use only one side of the banks at a time. If one want
to use registers belonging to the other side of the bank, he should change the
contexts with an EXX operation.
The instruction set includes the following classes:

Load 8-bit values to registers or an accumulator.

Load 16-bit values to registers.

— Arithmetic or logical instructions for the accumulator with registers.
— A single bit shift or rotate instructions.

Compare, block transfer, and search instructions.

Branch instructions.

Subroutine calls and returns from them.

— I/O instructions.

— Checking or setting a single bit in registers.

There are some particular instructions for extended registers or control instruc-
tions of processor. Z80 can execute addition, subtraction, AND, OR, exclusive
or (XOR), and single-bit rotation and shift. It does not have instructions for
multiplication and division.

On using the ordinary Z80 core, we should take some features of its archi-
tecture into account. It needs four clocks even for the basic instructions, such as
a no operation (NOP) or a load instructions between registers (LD r, r’). The
next fastest instructions, such as for loading a value to a register (LD r, n) con-
sume seven clocks. Operations for 16-bit register sets are more time consuming.
Although we try to use faster operations, the average number of clocks needed
for an instruction is about six.

2.2 Crypto Coprocessor

The coprocessor is developed mainly to accelerate the processing of the public
key cryptosystem. It has 512-byte RAM area (we call it the ‘CRAM’ area).
That area is segregated into two 256-byte RAM areas. The coprocessor can
execute various operations between the 256-byte RAM areas or on the 512-byte
RAM. Each maximum size of arithmetical operations supported by the crypto
coprocessor is shown in table 2.

It can execute the following classes of calculations:

Addition, subtraction, multiplication, division, and logical operations.
Modular multiplication.

Modular exponentiation.

— Montgomery multiplication.

— Extended Euclidean algorithm.

— Memory transfer in CRAM area.

Here, the logical operations mean AND, OR, and exclusive OR(XOR). The mem-
ory transfer is used to transfer data on CRAM area efficiently. So, the feature is
similar to the direct memory access (DMA). The most time consuming opera-
tion is a modular exponentiation with a large exponent. Other operations, when
used in implementing AES finalists, are very fast and finish within a time for
the minimum execution time of a Z80 instruction.

The coprocessor executes logical operations between operands located on
each CRAM areas. Before executing these operations, Z80 have to put several
bytes of control words on the CRAM area in addition to the operands. Since Z80
does not perform so fast to the data on memory, using coprocessor operations
are efficient for large data, but not so much for small data.

3 Implementations

3.1 Coding Rules
When we implement the AES finalist, we apply the following rules for the coding.

Table 2. Features of Toshiba’s Crypto Coprocessor

Instruction Max. of Operands (bits)
Addition 2,048
Subtraction 2,048
Multiplication 1,024
Division 2,048
Modular Multiplication 1,024
Exponentiation 1,024

— Program codes are located on the ROM area, and we do not change the code
at any time.

— We can use all registers, i.e., registers on both sides of the banks.

— The codes run in constant time not depend on the data to avoid timing
analysis.

— We can use memory on the CRAM area if necessary.

— We write codes that generate the extension keys with on-the-fly, if possible.

A time constancy of a code is an imprecise term. We try to give more precise
idea behind the third rule. If we have only to realize the time-constancy, we may
choose an easy way to stretch the execution time by merely adding NOPs at
the end of the code. But what we really have to do is to avoid timing analysis.
So, we have to pay more attention not to leak meaningful information. If we
can successfully apply the third rule, we can prevent simple power analysis as
well as timing attack. The third rule is not sufficient, though it seems necessary,
to prevent the differential power analysis. We don’t discuss on the differential
power analysis in this paper any further.

It is interesting that we may neglect the differences between rounds, for
example the key expansion of DES need 2-bit rotations in some rounds. They
may leak some information, but it seems useless for analysis.

In this section, we report the performance of AES finalists in alphabetic
order. For comparison purpose, results for 64-bit block ciphers, such as DES,
triple DES, and MISTY1, will be shown, as well. We describe the speed of each
algorithm with clocks and RAM requirement: In each table, ‘Int.” means that
size of required CRAM for coprocessor’s operations, and ‘Ext.” means other work
area. Note that 5,000 clocks at 5MHz correspond to 1 millisecond. For example,
DES needs about 25,000 clocks, and thus it works in 5ms.

The code of DES does not necessarily obey the coding rules above since
some permutations for DES are realized by hard wired logic. The triple DES
is a two-keyed one, but it executes the key schedule three times with on-the-
fly. Therefore, three-keyed triple DES will have the same performance result.
MISTY means the MISTY1 algorithm|[9] with eight rounds.

To apply our results easily for other processors that have similar features,
we try to reduce the memory usage on the CRAM area. But, in this paper, we
see that the memory usage is of little importance, since the platform chosen has
sufficient memory for these implementations.

3.2 MARS

It is the most difficult task for us to implement MARS on smart cards or other
limited resources. MARS has a complex high level structure such as eight rounds
of unkeyed forward mixing, eight rounds of keyed forward transformation, eight
rounds of keyed backward transformation, and eight rounds of unkeyed backward
mixing. Each of the eight rounds consists of so called type-3 Feistel network. In
a type-3 Feistel network, input data is segregated into four words. One of them
is taken as a pseudo-random function’s input and the output is used to modify
three other data words. Since MARS has a block length of 128 bits, each word
has 32 bit length.

There are three disadvantages of MARS when implemented on a smart card.
The first is that it needs 2KB table for S-boxes, but it is not serious. The second is
the weakness check of extended key on the key schedule. The last is the rotations
with variable shift amount. We discuss the last two disadvantages here.

It is necessary for MARS to implement complicated “weak” measures on the
key schedule[3]. The weak keys for MARS are different from those of DES. In
the case of DES, you may disregard the problem of weak key because it only
increases some potential threats caused by the weak key properties. However,
in the case of MARS, since the weak key check procedure is a part of the algo-
rithm specification, you have to check the weak on the key schedule certainly.
Otherwise, you may see a terrible result, such as differences in cipher text, al-
though it encrypts the same plain text with common key. As mentioned above,
the function of checking the weak on the key schedule is primarily needed.

Although implementing weak key check is necessary, it is also true that this
introduces another problem for smart card implementation. If we check the weak
and regenerate extension keys, there is a risk of applying timing attack. The
regeneration of extension keys causes difference in processing time and leaks
some information on the key. Further study of coding is necessary to avoid this
problem.

To save our time, our implementation just omits the weak key check. There-
fore, it is not complete. Our implementation is not so slow because of customiza-
tion for 256-bit key and omitting to check ‘weak’ on the key schedule. The codes
for check ‘weak’ on the key schedule will increase the requirement of ROM and
processing time.

The rotations depend on a key data or an internal data are crucial for Z80
or other 8-bit processors since we need to write codes that run in constant
time, or else an attacker can get some information about the key. Fortunately,
our coprocessor can operate modular multiplications over any modulus. We use
them for rotations. Modular multiplications on our smart card are very fast, and
finish within a single instruction of Z80. It means that we can operate modular
multiplications and data dependent rotations in a constant time and avoid timing
attack.

It seems that MARS is a prudent algorithm against cryptanalysis. But it
causes some difficulties in implementing on smart cards or similar resource-
restricted environments.

Table 3. MARS
RAM (bytes)

ROM (bytes)|Time (clock)

Total|Int |Ext
Encrypt| 60 |36 |24 3,977 45,588
Schedule| 512 (512 0 1,491 21,742
Total | 512 |512| 24 5,468 67,330

3.3 RCe6

RC6 has various parameters and is defined as RC6-w/r/b where w means the
word length, » means the number of rounds, and b means the length of key with
bytes. We write the code with the recommended parameters for AES such as
RC6-32/20/32.

RC6 has a simple structure, but the round function includes various oper-
ations such as, addition, subtraction, multiplication, and rotations depending
on a variable data. Most part of RC6 constructed by arithmetical operation.
Therefore, we operate almost all operations on the coprocessor. Furthermore,
since the coprocessor can operate up to 1,024 bits for operand, we can execute
the pair of rotations with constant shift amount in parallel. An n-bit rotations
to two data is written as follows: We duplicate each of data and put them on
corresponding CRAM area, then multiply them with 2". As a result, we can
improve the performance and reduce the size of code.

The coprocessor can execute RC6 data encryption efficiently. RC6 has a
simple key schedule but need much iterations and does not suitable with on-the-
fly. The key schedule takes four times as long execution time as encryption.

There is an idea to improve the key schedule processing time. A precomputed
table improves the speed, but increase the size of code. It omits the computation
of 43 initial values (S[i]) with 32-bit word. The modified code copies Sli]s from
precomputed ROM table to RAM area instead of computing S[i]s with constant
values. It shall reduce about 4,000 clocks. It needs some extra code or table for
precomputed table, thus the size of code increases about 150 bytes.

On the smart cards, RC6 has a moderate encryption speed among the final-
ists, but its key schedule is slower than Rijindael or Twofish. Note that it has
been reported that on the 32-bit processor, RC6’s performance is faster than
Rijndael and Twofish[5].

Table 4. RC6

RAM (bytes)
Total| Int |Ext
Encrypt| 124 {124 0 489 34,736
Schedule| 90 |90| O 571 138,851

Total | 156 |156| O 1,060 173,587

ROM (bytes)|Time (clock)

3.4 Rijndael

256-bit key is the fastest for on-the-fly key generation, since we can translate
the internal key every two rounds. 128-bit key is a little slower than 256-bit key,
since we need to make extension keys every round. In the case of 192-bit key,
since the key length is not the multiple of the block length, it is not so easy to
implement on-the-fly key generation.

The xtime is an important subroutine for time constancy. It needs modulus
operation with the primitive polynomial. Here is an example of straightforward
implementation of the xtime(a) algorithm where the original value is stored in
A register.

RLA
JR NC, SKIP
AND PRI ; PRI means the primitive polynomial.
SKIP:
; end.

This is a very dangerous code. Since ‘AND PRI operation is operated only
when the carry is ‘1, an attacker can know whether the value excesses 28 or not
in this code. We must avoid such an implementation. Therefore, we use some
techniques to avoid differences of processing time and thus prevent cryptanalysis
using timing attack. Here is an example of xtime(a) operation with constant
time, where a is stored in A register.

RLA
LD B, A
SBC A A
AND PRI
XOR B

RLA is a instruction of 1-bit leftward rotation for A register. If RLA is carried
out, MSB of A register is set to the carry flag. ‘SBC A, A’ is an instruction which
substract a value in A register and a carry from A register. It means that if the
carry flag is ‘1’ then A register has a value 0xff, otherwise A register has a value
0x00. Next we operate AND instruction with PRI for A register. Then we get
PRI or a value 0x00 in A register, and we can operate whether ‘XOR PRI’ or
‘NOP’ with the same instructions and processing time.

The transformation MixColumn is implemented in an efficient way shown in
section 5.1 in [4]. We implement the AddRoundKey and data transfers with the
coprocessor. Other transformations in Rijndael are not so heavy even for only
the Z80 core. Rijndael is the most efficient algorithm on the finalists on our
smart card.

A disadvantage of Rijndael is that it needs another code for decryption be-
cause of the asymmetry of encryption and decryption. If you need both encryp-
tion and decryption algorithms, it takes twice ROM area for code since most
part of it cannot be shared.

Table 5. Rijndael

RAM (bytes) ROM (bytes)|Time (clocks)

Total|Int|Ext
Encrypt| 34 |32] 2 700 25,494
Schedule| 32 |32]| 0 280 10,318
Total | 66 |64| 2 980 35,812

3.5 Serpent

There is two kinds of implementation of Serpent: ordinary implementation and
bitsliced implementation. Here is the result of an ordinary implementation of
Serpent. It is not a bitsliced implementation. It needs a 2,048-byte ROM table
on the ordinary implementation.

Serpent has various rotational operations. As is described in MARS imple-
mentation, modular multiplication with coprocessor can be used if they improve
the performance. Most of the rotations are, however, more efficient with the Z80
operations than with the coprocessor. 1-bit leftward or rightward rotations can
be implemented with the Z80 operations, and shifts with multiplies of 8-bit are
reorder of bytes. We use the coprocessor operations only for 11-bit rotations,
XOR, and memory transfer. Due to the architecture of our coprocessor, it is not
suitable to efficiently implement three-operand operation used in Serpent.

In [2], Serpent can be implemented using under 80 bytes of RAM with on-
the-fly. Our implementation needs twice more RAM, because we write it with
coprocessor’s operation XOR, between halves of CRAM with different offsets.

It has more rounds than other finalists do, so its performance is not so good
as Rijndael or Twofish.

The bitsliced implementation will reduce the size of code and required RAM
with a little degradation in speed. In memory-restricted environment, bitsliced
implementation may be better than the ordinary coding. In this paper, we at-
tach importance to the speed. So, we choose the ordinary implementation for
performance comparison.

3.6 Twofish

In the case that the length of key is less than 256-bit, we need to pad out the
original key until it becomes 256-bit. We implement Twofish with 128-bit key to

Table 6. Serpent

RAM (bytes) ROM (bytes)| Time (clock)

Total| Int |Ext
Encrypt| 68 [68| 0 3,524 71,924
Schedule| 96 |96 | 0 413 147,972
Total | 164 [164| 0 3,937 219,896

take the processing time for padding into account. It includes code for padding,
and it is a little slower than 256-bit key.

There are two models for implementing Twofish, such as Feistel model and
non Feistel model[14]. We implement it with non Feistel model. We assume that it
is faster than Feistel. We use coprocessor’s operations for additions with subkeys,
XOR, and memory transfers on CRAM area, but rotations are implemented with
Z80’s rotations.

The performance of Twofish depends on the size of precomputed tables’ [14].
We consider that the case of using some tables amounted to 1,536 bytes. This
code is compact for processing the key schedule with precomputed tables. It
seems be compatible with 2200 bytes for code and table size model in [14]. The
size of precomputed tables is belongs to encryption code in table 7.

Twofish is as fast as DES on throughput. It does not have any exceptional
advantages, but we have nothing to complain about the performance.

Table 7. Twofish
RAM (bytes)

ROM (bytes)|{Time (clock)

Total|Int|Ext
Encrypt| 34 [32| 2 2,493 31,877
Schedule| 56 |32]| 24 315 28,512
Total | 90 |64 26 2,808 60,389

4 Summary

We summarize the performance and the required resources on our implemen-
tations in table 8. The RAM includes required byte in the RAM area and the
CRAM area. Note that when using a coprocessor, the required amount of RAM
increase, because of the alignment rules for CRAM area.

Some finalists are designed to have heavy key schedules. They are intended
to prevent exhaustive search attacks, but resulting in speed reduction on smart
cards. We consider that Rijndael is excellent on all aspects. RC6 is as good as
Rijndael on the code point of view, but the key schedule consumes more time.

Twofish needs much ROM memory than RC6 and Rijndael because of the
table. It is faster than Triple DES and equal to DES on the throughput. It
will have good performance on any smart cards. MARS has disadvantages of
its code size caused by four of eight round iterations and a 2,048-byte table.
The speed is equal to Twofish’s one. We consider MARS has some difficulties
to check ‘weak’ on the key schedule and regenerate. Serpent has disadvantages
of its performance caused by the iterations of rounds and the difficulty of key
schedule. The bitsliced implementation will improve the requirement of ROM or
RAM, but slower than others.

We tried to write all program codes to consume as little RAM area as possible.
On the other hand, if we may regard the RAM area, especially CRAM area, as
a kind of free work space, it will be unfair to compare finalists how little work
area they consume. Nevertheless, notice that MARS consumes all the CRAM
area, whereas others consume at most half of the area.

Table 8. Comparison of AES finalists and the algorithms

Cipher RAM | ROM Time (clock)
(bytes)|(bytes)|Encrypt| Schedule |[Encrypt + Schedule
MARS 572| 5 |5,468| |45,588(4| 21,742(2 67,330 3 *
RC6 156| 3 |1,060|2|34,736|3|138,851|4| 173,587 4
Rijndael 66| 1 | 980(1/25,494|1| 10,318|1 35,812 1 only encryption
Serpent 164| 4 [3,937(4|71,924|5|147,972|5| 219,896 5
Twofish 90| 2 |2,808|3|31,877|2| 28,5123 60,389 2
DES 17 772 25,398
Triple DES| 17 849 72,341
MISTY 44 1,598 25,486

*: omit to check “weak” in the key schedule.

5 Conclusion

We have implemented AES finalists on a high-end smart card that is equipped
with a crypto-coprocessor. The resulting code has higher performance than that
on a low-end smart cards, since multiplication and rotation are efficiently imple-
mented using the coprocessor’s commands. Coprocessor’s RAM are also useful
for work memory, as well.

Regarding speed, Rijndael is the best one and is as fast as our DES imple-
mentation. It is twice faster than DES on the throughput. RC6 is suitable for
our smart card same as on the 8051[6, 8], but not to be compared with Rijndael
or Twofish because of the key schedule.

For smart card implementation, it is necessary to perform key schedule at
least for every processing block, in order to save memory areas to store extended

key. For the same reason, it is desirable for key schedule to be suitable for on-
the-fly key generation. As a result, design concept for key schedule affects the
performance very much, and those algorithms that have heavy key schedule are
not advantageous for smart card implementation.

Finally, we report the performance of E2[12] that is a candidate on the first

round in the appendix.

References

1. R. Anderson, E. Biham, and L. Knudsen, “Serpent: A Proposal for the Advanced
Encryption Standard”, AES submission, 1998.

2. R. Anderson, E. Biham, and L. Knudsen, “Serpent and Smartcards”, CARDIS
’98, 1999, available on http://www.cl.cam.ac.uk/~rjal4/serpent.html.

3. C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C. Jutla,
S. M. Matyas Jr., L. O’Connor, M. Peyravian, “MARS -a candidate cipher for
AES”, AES submission, 1998.

4. J.Daemen, V.Rijmen, “AES Proposal: Rijndael”, AES submission, 1998.

5. B. Gladman, “AES Algorithm Efficiency”,
http://www.btinternet.com/~brian.gladman/cryptography_technology/Aes/

6. G. Hachez, F. Koeune, and J. Quisquater, “cAESar results: Implementation of
Four AES Finalists on Two Smart Cards”, The second AES conference, 1999,
available on http://www.dice.ucl.ac.be/crypto/ CAESAR/caesar.html.

7. H. Handschuh, and P. Paillier, “Smart Card Crypto-Coprocessors for Public-Key
Cryptography”, CryptoBytes, Vol. 4, No. 1, RSA Laboratories, 1998.

8. G. Keating, “Performance Analysis of AES candidates on the 6805 CPU core”,
The second AES conference, 1999,
available on http://www.ozemail.com.au/~geoffk /aes-6805/.

9. M. Matsui, “New Block Encryption Algorithm MISTY”, Fast Software Encryp-
tion, 4th International Workshop Proceeding, LNCS 1267, Springer-Verlag, 1997,
pp.54-68.

10. National Bureau of Standards, “Data Encryption Standard”, U.S.Department of
Commerce, FIPS 46-3, October 1999.

11. J. Nechvatal, E. Barker, D. Dodson, M. Dworkin, J. Foti, and E. Roback, “Sta-
tus Report on the First Round of the Development of the Advanced Encryption
Standard”, http://csrc.nist. gov/encryption/aes/round1/rlreport.pdf

12. Nippon Telegraph and Telephone Corporation, “Specification of E2 — a 128-bit
Block Cipher”, AES submission, 1998.

13. R.L. Rivest, M.J.B. Robshaw, R. Sidney, Y.L. Yin, “The RC6 Block Cipher”,
AES submission, 1998.

14. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, “Twofish; A 128-Bit Block
Cipher”, AES submission, 1998.

15. ZiLOG, “Z80 Microprocessor Products”,
available on http://www.zilog.com/products/z80.html

16. http://csrc.nist.gov/encryption/aes/round2/Round2WhitePaper.htm, 1999.

17. http://www.toshiba.co.jp/about/press/1999_02/pr_j0301.htm, (in Japanese).

A E2

E2 is not selected as a finalist for the second round review. But it has a good
performance, especially encryption speed without key schedule. The serious dis-
advantages of E2 are that it has time consuming key schedule and can’t execute
it with on-the-fly. Fortunately, since the RAM usage fits on the half of CRAM
area, we select a way to extend all round keys on the half of them, at first. In this
case, E2 is efficient for encryption just like the report in [6]. The round function
is designed as suitable for byte oriented operations. It is good for the Z80 archi-
tecture. It is, however, difficult for Z80 to execute multiplication on the IT and
division on the FT. We use the coprocessor’s commands for these operations.
Those commands include XOR, memory transfer, multiplication, and inverse.

Table 9. E2

RAM (byte)
Total|Int |Ext
enc | 26 [24| 2 1,519 17,018
key | 548 |512| 36 296 79,358
Total| 548 [512| 36 1,815 96,376

ROM (byte)| clock

How Well Are High-End DSPs Suited for the AES

Algorithms? *
AES Algorithms on the TMS320C6x DSP

Thomas J. Wollinger!, Min Wang?, Jorge Guajardo!, Christof Paar!

'ECE Department
Worcester Polytechnic Institute
100 Institute Road
Worcester, MA 01609, USA

Email: {wolling, guajardo, christof}@ece.wpi.edu

2 Texas Instrument Inc.
12203 S.W. Freeway, MS 722
Stafford, TX 77477, USA

Email: minwang@micro.ti.com

Abstract

The National Institute of Standards and Technology (NIST) has announced that one of
the design criteria for the Advanced Encryption Standard (AES) algorithm was the ability
to efficiently implement it in hardware and software. Digital Signal Processors (DSPs) are a
highly attractive option for software implementations of the AES finalists since they perform
certain arithmetic operations at high speeds, they are often smaller and more energy-efficient
than general purpose processors, and they are commonly used for the rapidly growing market
of embedded applications. In this contribution we investigate how well modern high-end DSPs
are suited for the five final candidates chosen after the second AES conference. As a result of
our work we will compare the optimized implementations of the algorithms on a state-of-the-art
DSP.

Keywords: cryptography, DSP, block cipher, implementation

*This research was supported in part through a graduate fellowship by secunet Security Networks AG and a grant
from the Texas Instrument University Research Program.

1 Introduction

The National Institute of Standards and Technology (NIST) has initiated a process to develop a
Federal Information Processing Standard (FIPS) for the Advanced Encryption Standard (AES),
specifying an encryption algorithm to replace the Data Encryption Standard (DES) which expired
in 1998 [14]. NIST has solicited candidate algorithms for inclusion in AES, resulting in fifteen
official candidate algorithms of which five have been selected as finalists. Unlike DES, which was
designed specifically for hardware implementation, one of the design criteria for the AES candidate
algorithms is that they can be efficiently implemented in both hardware and software. Thus, NIST
has announced that both hardware and software performance measurements will be included in their
efficiency testing. Several earlier DSP’s contributions looked into the software implementation of
the AES algorithms on various platforms [1]. However, there was only one publication dealing with
the implementation of the candidate algorithms on a Digital Signal Processor (DSP) [9].

Digital Signal Processors are a distinct family of micro processors. In comparison to the more
common general purpose processors such as those offered by, e.g., Intel and Motorola, DSPs allow
for fast arithmetic, special instructions for signal processing applications, real-time capabilities, rel-
atively lower power, and relatively lower price (obviously, those statements tend to over-generalize
and should not be taken too literally). The main application areas of DSPs are embedded systems,
such as wireless devices, cable and Digital Subscribe Line (DSL) modems, various consumer elec-
tronic devices, etc. With the predicted increase of embedded applications and pervasive computing,
it is not unreasonable to expect that DSPs and DSP-like processors will become more common-
place. At the same time, it seems likely that many future embedded applications will need some
form of encryption capability, for instance, for assuring privacy over wireless channels.

The questions that we try to address in this contribution are: How well are high-end DSPs
suited for the implementation of the AES finalists? Can modern DSPs compete with general
purpose computers in terms of speed?

In this paper, we focus on the implementation of the five AES finalists on a Texas Instruments
TMS320C6000 DSP platform. In particular, the implementations are on a 200 MHz 'C62x/’C64x
which performs up to 1600/8800 million instructions per second (MIPS) and provides thirty-
two/sixty-four 32-bit registers and eight independent functional units.

2 Previous Work: Cryptography on DSPs

The field of implementing cryptographic algorithms on special platforms is very active. However,
the research done on implementation of cryptographic schemes on a DSP is limited. There are
a few papers that deal with public-key cryptography. There is one previous paper about the
implementation of the AES candidates on a DSP. The papers [3, 7, 10] deal primarily with the
implementation of public key algorithms on DSP processors. The main conclusion of these papers
is that DSPs are a good choice for these algorithms due to the integer arithmetic capabilities of
DSPs.

Reference [7] also describes the implementation of DES on a Motorola DSP 56000. It was found
that the algorithm encrypts at roughly the same speed as a contemporary PC (20 MHz Intel 80386).

Karol Gorski [9] commented on the set of the AES Round 1 candidate algorithms, based on
the timings obtained on the TT TMS320C541 DSP. Reference [9] used the C implementation by
Brian Gladman, compiled with full compiler level optimizations. The resulting low speeds of the
algorithms were due to the 'Ch4x 16 bit operations which are not ideal for most of the AES
candidates. There was also no effort made to optimize the algorithms beyond those optimizations
automatically performed by the C compiler.

3 Methodology

3.1 The Implementation of the Five AES Finalists

We implemented Mars, RC6, Rijndael, Serpent and Twofish on a TMS320C6201 DSP. RC6 was also
implemented on the C64x DSP. As the basis of the implementations we used either the reference or
optimized C code provided by the algorithm’s authors, or the C code written by Brian Gladman [8].

It is important to point out the way we chose to code each algorithm, because they all offer
several implementation options. In [6], the authors of Rijndael proposed a way of combining the
different steps of the round transformation into a single set of table lookups. Each table has
256 4-byte word entries. Similarly, our Twofish implementation uses the ”Full Keying” option as
described in the specification [13]. Inother words we used 4 KByte tables which combine both the S-
box lookups and the multiplication by the column of the MDS matrix. RC6 is a fully parameterized
encryption algorithm [11]. The version of RC6 that we implemented is RC6-32/20/16. Mars was
coded in the original version as stated in the algorithm specifications in [4], with 8, 16, and 8
rounds of “forward mixing”, “main keyed transformation”, and “backwards mixing”, respectively.
Finally, in [2] the authors described an efficient way to implement Serpent. Thus, we implemented
the S-boxes as a sequence of logical operations which were applied to the four 32-bit input blocks.

3.2 Tools and Optimization Effort

The source code was first compiled using the standard Texas Instruments C compiler (versions 3.0
and 4.0 alpha), utilizing the highest level of optimizations (level 3) available. For further information
about the levels of optimization performed by the compiling tools, see [15, page 32 and 3-3].
After the implementation of the C code version, we optimized the encryption and decryption
functions of the algorithms so that the compiler could further optimize it. In order to do so, we took
advantage of the 32-bit data bus which is capable of loading 32-bit words at a time. We performed
math operations with Intrinsic Functions to speed up the C code. Intrinsic Functions are similar
to an additional mathematical Run-Time Support (RTS) library. They allow the C code to access
hardware capabilities of the ’C6x devices while still following ANSI C coding practices. We also
tried to use as many of the functional units in parallel as possible, e.g., by replacing constant

multiplication by shifts, by unrolling loops, or by preserving loops.

We further rewrote the encryption and decryption function for most algorithms in linear as-
sembly to achieve performance improvements. Linear assembly is assembly code that has not been
register-allocated and is unscheduled. The assembly optimizer assigns registers and uses loop op-
timization to turn linear assembly into highly parallel assembly. However, we did not program in
pure assembly which is a very challenging and time consuming task on a complex processor such
as the ’C6201, with eight independent functional units.

3.3 Parallel Processing: Single-Block Mode vs. Multi-Block Mode

In addition to the optimizations described above, we implemented a second version of code in
which data blocks can be processed in parallel. With parallel processing, the encryption and the
decryption functions can operate on more than one block at a time using the same key. This allows
better utilization of the DSP’s functional units which leads to better performance.

With parallel processing, however, the speedups may only be exploited in modes of operations
which do not require feedback of the encrypted data, such as Electronic Code-Book (ECB) or
Counter Mode. When operating in feedback modes such as Ciphertext Feedback mode, the cipher-
text of one block must be available before the next block can be encrypted. For the remainder
of our discussion, single-block mode will denote feedback modes and multi-block mode will denote
non-feedback modes.

3.4 The TMS320C62x Digital Signal Processor

We chose the TMS320C6201 fixed point digital signal processor out of the TMS320C62x family. In
this subsection we introduce the key architectural features of the DSP which are relevant for our
implementation.

The "C6201 performs up to 1600 million instructions per second (MIPS) at a clock rate of 200
MHz. These processors have thirty-two 32-bit registers and eight independent functional units.
As shown in Figure 1, the ’C62x has four pairs of functional units. The architecture of the DSP
has effectively been divided in two identical halves. Each half is composed of four independent
functional units (.S, .M, .L, and .D) and a bank of sixteen 32-bit registers. The processor also
allows limited communication between the two halves.

The multiplier unit is indicated by .M and accepts two 16-bit words as an input and outputs a
32-bit result. In addition to the two multipliers, the processor provides six arithmetic logic units
(ALUs). The .L unit, that has the ability to perform 32/40-bit arithmetic operations, comparisons,
normalization count for 32/40-bits, and 32-bit logical operations. With the .D unit we can add 32-
bit words, subtract, do linear and circular address calculation, and write to and load from memory.
The .S unit provides the functionality for 32-bit arithmetic operations, 32/40-bit shifts, 32-bit bit-
field operations, 32-bit logical operations, branching, constant generation, and register transfers
to/from the control register file [16].

Register File A Register File B

A0 BO
Al B1
A2 <« | Sl S2 | «—> B2
A3 B3
A4 B4
A5 BS
AB «—> | Ml M2 | «—> B6
«—> L1 L2 || «—>
«— | D1 D2 | «—>
Al15 B15
32-bits 32-bits

Data Memory

Figure 1: TMS32062x Functional Units [16]

The 'C6201 includes a bank of on-chip memory and a set of peripherals. Program memory
consists of a 64K-byte block that is configurable as cache or memory-mapped program space. A
64K-byte block of RAM is used for data memory. The peripheral set includes two serial ports, two
timers, a host port interface, and an external memory interface.

The *C6000 development environment includes: a C Compiler, an Assembly Optimizer to sim-
plify programming and scheduling, and the Code Composer Studio™, which is a MS Windows
debugger interface for visibility into source execution. All of the C6000 devices are based on the

ITM

same CPU core featuring VelociT , a highly parallel architecture that provides software-based

flexibility and good code performance for multi-channel and multi-function applications.

4 Results

4.1 Results on the TMS320C6201 DSP

All the figures presented in this section refer to a 128-bit block encryption or decryption with a
key of 128 bits. The algorithms are timed with the Code Composer Simulator, which is part of
the Code Composer Studio™ for the TMS320C6201 DSP. Code Composer Simulator uses the
simulated on-chip analysis of a DSP to gather profiling data.

The reported results in Table 1 refer to either a C or a Linear Assembly implementation. In
the cases where we had the possibility to choose between two implementations we referenced the
fastest results found by us. All the timings shown are obtained from a C implementation using the
compiler version 4.0 alpha unless otherwise indicated.

To convert cycle counts into encryption or decryption rates expressed in bits per second, we
divided 128 % 200 * 10 by the cycle count. For example, the encryption speed of Twofish in multi-
block mode is computed as: 128 % 200 * 106/184 = 139.1 Mbit /sec.

The order of the algorithms is based on the mean speed of encryption and decryption in multi-
block mode. The mean speed can simply be calculated by adding the speed of the encryption and
decryption functions and then dividing the sum by two. For instance, the mean speed in multi-block
mode for RC6 equals (128.0 + 116.4)/2 = 122.2 Mbit /sec.

DSP DSP Pentium-Pro
multi-block mode | single-block mode DSP multi-block
@ 200MHz @ 200MHz @ 200MHz | mode/Pentium
cycles | Mbit/sec | cycles | Mbit/sec Mbit /sec
Twofish encryption | 184 139.1 308 83.1 95.0 [17] 1.5
decryption | 172 148.8 290 88.3 95.0 [17] 1.6
RC6 encryption | 200 T 128.0 292 87.7 97.8 [12] 1.3
decryption | 220 116.4 281 91.1 112.8 [§] 1.03
Rijndael encryption | 228 % | 112.3 | 228*% 112.3 70.5 [8] 1.6
decryption | 269 ¥ 95.2 269 ¥ 95.2 70.5 [8] 1.4
Mars encryption | 285 89.8 406 63.1 69.4 [8] 1.3
decryption | 280 91.4 400 64.0 68.1 [8] 1.3
Serpent encryption | 772 33.2 871 * 29.4 26.8 [§] 1.2
decryption | 917* 27.9 917 * 27.9 28.2 [§] 1.0

Table 1: Performance results of the AES candidates on the TMS320C6201

Here are comments about the results in Table 1:

e The highest level of optimizations were used for all algorithms, with the exception of Serpent
decryption. The loop in Serpent is too complex and too long so the optimizer was only
able to schedule the code in a lower level. Hence, the performance figures for decryption are
slightly worse than the numbers for encryption. In addition, the throughput of the decryption
function is the same for single-block and multi-block modes.

e The linear assembly code of Rijndael can be optimized by the tools very efficiently. In this
case we could not gain a performance advantage by parallel processing, which results in the
same speed for single-block and multi-block modes.

e In all cases, except for RC6 encryption, we encrypted and decrypted two blocks at a time
in multi-block mode. We were able to process three blocks at a time in parallel for RC6

*C implementation using compiler version 3.0
TLinear assembly implementation using compiler version 3.0
fLinear assembly implementation using compiler version 4.0 alpha

encryption. Hence, we could use a large number of functional units in parallel and could
reach a high throughput. For some of the other algorithms we tried to use three blocks in
parallel as well. However, the optimizer was not able to create efficient loops due to the
number of instructions.

4.1.1 Results in Multi-Block Mode

In Table 1 we compare the throughput speeds of the TMS320C6201 and a 200MHz Pentium Pro. In
order to allow for an easy comparison we added the rightmost column to the table, where we divided
the highest speed in multi-block mode on the DSP with the performance numbers on the Pentium.
In this way we normalized our numbers by the speed achieved on the Pentium Pro platform. If
the ratio is larger than one, the implementation of the algorithm on the DSP is faster than the one
on the Pentium. One can see that in all cases but one we could achieve higher throughput on the
DSP than the best known results on a Pentium Pro IT with the same clock rate. Only for Serpent
decryption were the Pentium and the DSP speeds almost identical.

We can also see from the performance ratio in the rightmost column how well the algorithm
structure is suited for the DSP. Rijndael encryption and Twofish decryption gain the most when
implemented on the DSP compared to the implementation on a Pentium. In both cases the quotient
of the throughputs is approximately 1.5, which means that the speed of the particular function on
the DSP is roughly 50% faster than the same function on the Pentium.

In addition to our above analysis, we ranked the AES finalists based on their performance
on the 'C6000 DSP family. This ranking compares the mean speed of the algorithms in multi-
block mode. Twofish with a mean speed of 144.0 Mbit/sec and RC6 with 122.2 Mbit/sec are the
fastest algorithms. These two algorithms are followed by Rijndael with a mean throughput of 103.8
Mbit/sec and Mars with 90.3 Mbit/sec. Serpent with 30.6 Mbit/sec is poor in terms of throughput
on the DSP.

4.1.2 Results in Single-Block Mode

The results stated above refer only to the cases in which we used multi-block mode. If we look at the
single-block mode case, Rijndael encryption and decryption as well as Serpent encryption perform
better on the DSP than on a Pentium. Rijndael encryption with 112.3 Mbit/sec is almost 60%
faster than the corresponding Pentium implementation and Rijndael decryption at 95.2 Mbit /sec
is almost 40% faster. Judged by their speed performance on the C62x, Serpent decryption, Mars
encryption and decryption, and Twofish decryption are slightly worse than on a general-purpose
computer. The remaining functions, T'wofish encryption and RC6 encryption and decryption, are
much slower than the corresponding Pentium functions.

If we had ranked the algorithms based on their mean speed in single-block mode, Rijndael with
103.8 Mbit/sec would be the fastest, followed by RC6 with 89.4 Mbit/sec, and Twofish with
85.7 Mbit/sec. Mars with 63.6 Mbit/sec and Serpent with 28.7 Mbit/sec are not as good in
single-block mode.

We would like to point out that all of our “best” results were achieved using the methodology
described above, and that other coding styles, such as pure assembly, might be able to achieve
higher throughputs.

4.1.3 Comparison of the Results with the Critical Path of the Algorithms

Craig S.K. Clapp analyzes the critical path of Crypton, E2, and the five AES finalists. In his
analysis, [5] only counts instructions and cycles associated with the transformation of a plaintext
block into a ciphertext block in ECB mode. In other words, instructions associated with loading
of plaintext, storing of ciphertext, and loop overhead are ignored. Clapp concludes that based on
the length of its critical path, Rijndael stands well ahead of the pack with 71 cycles/block. Twofish
(162 cycles/block), RC6 (encryption with 181 cycles/block and decryption with 161 cycles/block),
and Mars (214 cycles/block) form the second tier. Finally, Serpent’s critical path is a factor of two
longer than the next nearest candidate (encryption with < 526 cycles/block and decryption with
< 436 cycles/block).

The results that we achieved in single-block mode are in agreement with those obtained by
analyzing the critical path. Rijndael is in both cases by far the fastest algorithm. The throughput
of RC6 is slightly better than the throughput of Twofish on the DSP, even though the critical
path of Twofish is a little shorter than the one from RC6. Mars is ranked in both, the DSP speed
analysis and the critical path analysis of [5], the same. Serpent results trail the nearest candidate
in both analyses by more than a factor of two. It is important to point out that while the critical
path for decryption is shorter than that for encryption in Serpent, decryption is actually slower
than encryption in the DSP implementation.

The discrepancies are due to our use of automatic optimization. The optimizer tries to create
the best machine code possible. Nevertheless, the optimizer might not be able to reach the cycle
count of the critical path for some algorithms. We might be able to overcome these differences by
rewriting the functions in full assembly. We were not able to do this because of time constraints.

4.1.4 Memory Usage

Embedded system applications have often memory constrains. Hence this subsection looks at the
memory requirements of our implementation. The *C6201 has three 16 Mbyte regions of external
memory. These regions can support synchronous or asynchronous 32-bit access. There is also
one 4 Mbyte region of asynchronous external memory which is typically used to store the boot
information. The ’C6201 contains one megabit of internal RAM which is split between program
and data memory. All this internal memory is zero wait-state. Table 2 summarizes the memory
usage of the algorithms in our implementation.

As it can be seen from Table 2, the memory usage of the algorithms varies almost by an order
of magnitude. RC6 uses the least program memory and Serpent the most. In some cases, e.g. for
Serpent, the algorithms require a large amount of program memory, because we optimized them for
speed. Hence we calculated the look-up tables on the “fly” with boolean-algebra and this increases

Memory Usage Memory Usage
multi-block mode single-block mode
Data ROM | Program | Data ROM | Program
/Bytes /Bytes /Bytes /Bytes
Mars 3072 3072
encryption 3280 2428
decryption 2956 2372
RC6 0 0
encryption 608 576
decryption 672 576
Rijndael 16384 16384
encryption 2360 1180
decryption 2960 1480
Serpent 0 0
encryption 5844 3568
decryption 6016 5104
Twofish 168 168
encryption 1416 700
decryption 1420 708

Table 2: Memory Usage on the TMS320C6201

the program code. The data ROM represents constant arrays, which in our cases correspond to
the look-up tables. RC6, for example, uses no tables, hence the data ROM is zero.

4.2 Results on the TMS320C64x

The TMS320C64x clock can be scaled to up to 1.1 GHz and can perform up to 8800 MIPS. The
C64x has extended parallelism support with quad 8-bit and dual 16-bit operations. Also, the sixty-
four 32-bit registers and 8 functional units lead to better performance. We also took advantage
in our implementation of the better data access and the extended instruction set of the C64x (for
example, rotation, Galois field multiplication, etc.).

We chose RC6 to be implemented on the C64x. The results that we present in this section are
based on a C implementation and are compiled with compiler version 4.0 beta.

The results in Table 3 for RC6 achieved with the ’C64x in multi- and single-block mode are
better than the results we got from the ’C6201. RC6 encryption in multi-block mode is almost 70%
faster than on a general-purpose machine.

At this point it is important to remark that the optimizer tools are quite advanced for the 'C62x,
but are still in a very early stage for the ’C64x. That means if we only perform C code optimizations,

we will not get good performance numbers on the ’C64x. We expect an improvement when we
rewrite the functions in linear assembly. We did a detailed analysis for hand coded assembly RC6
and we estimated a performance of 229 cycles/block (for each encryption- and decryption-function)
in single-block mode.

DSP DSP Pentium-Pro
multi-block mode | single-block mode DSP multi-block
@ 200MHz @ 200MHz @ 200MHz | mode/Pentium
cycles | Mbit/sec | cycles | Mbit/sec Mbit /sec
RC6 encryption | 155 165.2 277 92.4 97.8 [12] 1.7
decryption | 154 166.2 278 92.1 112.8 [§] 1.5

Table 3: Performance results of two AES candidates on the TMS320C64x

5 Conclusions

“How well are high-end DSPs suited for the AES algorithms?” was the main question that we
asked ourselves as a motivation to write this paper. We noticed that in almost all cases the AES
finalists’ encryption and decryption functions reach higher speeds on the ’C6000 DSPs than the best
known Pentium Pro II implementations, at identical clock rates. It was observed that some of our
implementations on the ’C6201 were over 50% faster than the best known performance numbers on
the Pentium platform. In addition, our implementation of RC6 on the 'C64x reached speeds which
were almost 70% faster than those of the Pentium. RC6 on the ’C64x encrypts with a throughput
of 165.2 Mbit/sec and decrypts with a speed of 166.2 Mbit/sec. Twofish with an encryption speed
of 139.1 Mbit/sec and decryption of 148.8 Mbit/sec was by far the fastest throughput that we
obtained on the ’C6201. Hence, we can conclude from our results, that state-of-the-art DSPs are
well suited for the architecture of the AES finalists.

6 Acknowledgment

We would like to thank William Cammack from TT for his helpful comments.

References

[1] Second Advanced Encryption Standard (AES) Conference. Rome, Italy, March 1999. National
Institute of Standards and Technology (NIST).

[2] R. Anderson, E. Biham, and L. Knudsen. Serpent: A Proposal for the Advanced Encryption
Standard. In First Advanced Encryption Standard (AES) Conference, Ventura, CA, 1998.

10

3]

[10]

[11]

[12]

[13]

[14]

P. Barrett. Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm
on a Standard Digital Processor. In A. M. Odlyzko, editor, Advances in Cryptology - Crypto
’86, volume 263, pages 311-326, Berlin, Germany, August 1986. Springer-Verlag.

Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gennaro, Shai Halevi,
Charanjit Jutla, Stephen M. Matyas Jr., Luke O’Connor, Mohammad Peyravian, David Saf-
ford, and Nevenko Zunic. Mars - a candidate cipher for AES. In First Advanced Encryption
Standard (AES) Conference, Ventura, CA, 1998.

Craig S.K. Clapp. Instruction-level Parallelism in AES Candidates. Second AES Conference,
March 1999. http://csrc.nist.gov/encryption/aes/reoundl/conf2/papers/clapp.pdf

J. Daemen and V. Rijmen. AES Proposal: Rijndael. In First Advanced Encryption Standard
(AES) Conference, Ventura, CA, 1998.

Stephen R. Dussé and Burton S. Kaliski Jr. A Cryptographic Library for the Motorola
DSP56000. In Ivan B. Damgard, editor, EuroCrypt ’90, volume 473 of Lecture Notes in
Computer Science, pages 230-244, Berlin, Germany, May 1990. Springer-Verlag.

Brian Gladman. AES Algorithm Efficiency, 2000.
http://www.btinternet.com/ brian.gladman/cryptography_technology/Aes2/
index.htm

Karol Gorski and Michal Skalski. Comments on the AES Candidates. Technical report,
National Institute of Standards and Technology, ENIGMA SOI Sp. z 0.0., Warsaw, Poland,
April 1999. http://csrc.nist.gov/encryption/aes/roundl/comments/Ricomments.pdf

Kouichi Itoh, Masahiko Takenaka, Naoya Torii, Syouji Temma, and Yasashi Kurihara. Fast
Implementation of Public-Key Cryptography on a DSP TMS320C6201. In Cetin K. Ko¢ and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems, volume 1717 of Lecture
Notes in Computer Science, pages 61-72, Berlin, Germany, August 1999. Springer-Verlag.

R. Rivest, M.J.B. Robshaw, R. Sidney, and Y.L. Yin. The RC6™ Block Cipher. In First
Advanced Encryption Standard (AES) Conference, Ventura, CA, 1998.

RSA Security. The RC6 Block Cipher - Performance, 1999.
http://www.rsasecurity.com/rsalabs/aes/rc6_performance.html

B. Schneier, J. Kelsey, D. Whiting, D. Wagner, and C. Hall. Twofish: A 128-Bit Block Cipher.
In First Advanced Encryption Standard (AES) Conference, Ventura, CA, 1998.

W. Stallings. Cryptography and Network Security. Prentice Hall, Upper Saddle River, New
Jersey 07458, 2nd edition, 1999.

11

[15] Texas Instruments Incorporated. TMS320C6x Optimizing C Compiler User’s Guide. Custom
Printing Company, Owensville, Missouri, February 1998.

[16] Texas Instruments Incorporated. TMS320C6x/C67x Programmer’s Guide. Custom Printing
Company, Owensville, Missouri, February 1998.

[17] D. Whiting. Twofish Timing Measurements. electronic mail personal correspondence, January
2000.

12

Fast Implementations of AES Candidates

Kazumaro Aokl and Helger Lipmah

! NTT Laboratories
1-1 Hikarinooka, Yokosuka-shi, Kanagawa-ken, 239-0847 Japan
maro@isl.ntt.co.jp
2 Kiberneetika AS
Akadeemia tee 21, 12618 Tallinn, Estonia
helger@cyber.ee

Abstract. Of the five AES finalists four—MARS, RC6, Rijndael, Twofish—
have not only (expected) good security but also exceptional performance on the
PC platforms, especially on those featuring the Pentium Pro, the NIST AES
analysis platform. In the current paper we present new performance numbers
of the mentioned four ciphers resulting from our carefully optimized assembly-
language implementations on the Pentium Il, the successor of the Pentium Pro.
All our implementations follow well-defined API and timing conventions and
sensible guidelines, like no using of self-modifying code and key-specific static
data — i.e., tricks that speed up the implementation but at the same time restrict
the field of application. Our implementations are uR2686 percent faster than
previous implementations. Our work also shows how a simple change (inclu-
sion of the MMX technology) in the analysis platform can influence the relative
encryption speed of different ciphers. To enable everyone to compare their imple-
mentations to ours, we also fully specify our procedures used to obtain the speed
numbers.

1 Introduction

For more thar20 years, DES [FIP77] has been a widely employed cryptographic stan-
dard. While the best cryptanalytic attacks against DES (differential and linear cryptanal-
ysis) are still highly impractical, during the last years DES has became obsolete for its
too short key and block sizes, not withstanding the current advances in computing tech-
nology. Motivated by this, NIST initiated a new effort to replace DES as a staneiard.
algorithms were submitted anid algorithms were accepted as AE®ianced Encryp-

tion Standardl candidates, of which candidates—MARS [BCD98], RC6 [RRSY98],
Rijndael [DR98], Serpent [ABK98], Twofish [SKW99b]—were chosen to the second
round.

However, the AES process was started not only due to the theoretical reasons: there
are a few well-known constructions, including 3DES, that seem to have very good secu-
rity margins. Unfortunately, 3DES, based on the hardware-oriented DES, is unsatisfy-
ingly slow on the modera2- and64-bit computer architectures: modern block ciphers
are up tol0 times faster than 3DES. Regardless of these ciphers having unproven (even
by time) security properties, they are widely used in the industry by pragmatic reasons:
hardware applications like GBits/s Ethernet or on-the-fly encryption td0 MByte/s

SCSI hard disks are requesting for faster ciphers. Clearly, the situation of having a
(moderately) secure and (moderately) fdstjure standard DES, a (probably) secure
and (clearly) slowde factostandard 3DES and some fast but with unknown security
marginde factostandards is not acceptable: there should be a single standard that is
both secure and fast. This is one of the reasons why, when inviting the public to pro-
pose candidates for the AES, NIST explicitly stated that the new standard should be
both “more secure and faster” than 3DES.

While security of the candidates cannot be exactly quantified by the currently known
methods, it seems to be easier to measure their speed. However, there is still a lot of
ambiguity in answering the question what AES candidate is the fastest. Several pa-
pers (including [Lip99,SKW99a]) have compared AES candidates speed, but since
the implementations quoted in them are often incomparable (or based on pure estima-
tions), one cannot make direct conclusions about the efficiency of the ciphers based
on the published papers. Incomparability stems from the different implementation as-
sumptions, API's, hardware (e.g., processors) and software (e.g., compilers) used by
implementers. Even more, some of the timings presented in previous papers correspond
to “show-case” (as opposed to practically applicable) implementations, some exam-
ples of those being the fastest implementation of Twofish [Si@b] that uses self-
modifying code and Brian Gladman’s implementations of AES candidates [Gla99] that
use a number of key-specific static variables instead of allocating a register to address
them, therefore effectively freeing some registers for other uses. Especially in the case
of the Pentium family, where the number of available registers is very restricted, such
implementations may result in a huge speed up. However, both types of implementation
tricks restrict the application area of the implementation.

In the current paper we try to give a satisfactory answer to the question “what cipher
is the fastest on the Pentium 11" by carefully optimizing thfastest AES candidates—
MARS, RCB6, Rijndael and Twofish—in Pentium Il assembly, using for all implementa-
tions exactly the same, reasonable in practice, APl and speed measurement conditions
for all the ciphers. Due to this, our results are much fairer than most of the previously
known ones: our implementations can be seen as black boxes applicable in almost any
possible application of block ciphers on an environment featuring Pentium Il. Addi-
tionally, careful optimization process resulted in implementations that are clearly faster
than the previously known implementations. (Except for Twofish, which has still a faster
“show-case” implementation.)

We start the paper by describing our platform of choice (Section 2), implementation
philosophy and API (Section 3). Section 4 briefly surveys our results, and Section 5
gives more details on the problems encountered when implementing the ciphers. More
information about the Pentium Il is given in the Appendices.

2 Choice of the Platform

Ouir first principal choice was the decision what processor to use. By purely pragmatic
reasons we decided that the implementation environment equips an Intel Pentium family
CPU: while this family is not the most modern processor family available, it is the most

widespread one at the moment of writing this paper and most probably also during the

next few years. Therefore, since in the foreseeable future most of the software-based
commercial security applications run on the Pentium family (as recognized also by the
AES finalists designers), this family has the most direct impact on the choice of a cipher
by security consumers.

At second, from the Pentium family we decided to choose the Pentium Il processor.
At first, it is a more advanced processor than Pentium Pro, the NIST AES analysis
platform: the Pentium Il provides (twice) larger register space due to the added MMX
technology, and many new MMX-specific commands. Compared to the Pentium Pro,
the Pentium Il is also easier to obtain at the current stage, since Pentium Pro has been
out of the manufacturing for a while. On the other hand, the Pentium Il was preferred
by the authors to the Pentium Il since the latter is somewhat too new and controversial
due to the privacy issues.

Another reason to choose Pentium Il was that as the successor of the NIST AES
analysis platform, implementing the AES candidates on the Pentium Il could provide
some insights on how generally suitable are the candidates, some of which were specif-
ically optimized for the Pentium Pro, on future processors having features unpredicted
by algorithm designers. While this is not as crucial as withstanding the “future attacks”,
it still gives some ideas about the possible longevity of the cipher. (We clearly would
not want the AES ir20 years to have the role the 3DES has today!)

As shown in [Lip98], the MMX technology can seriously speed up IDEA ([LM90],
[LMM94]), one of the believably most secure block ciphers with 64-bit block size. As
stated in [Lip98], this can be done since IDEA has its key attributes similar to those
of multimedia applications, for which the MMX technology was originally created. An
open question posed in [Lip98] was how much would the MMX technology help imple-
menting other ciphers, including the AES candidates. In the following we will partially
answer to that question, showing that also some ciphers using only “simple” operations
can greatly benefit from the added MMX technology. A short overview of Pentium Il
that is necessary for implementers and for cryptographers who design ciphers optimized
for this platform is given in Appendix A. We refer for Intel manuals for a more complete
overview.

3 Implementation Considerations

Several papers (including, in particular, [Lip99,SK\@0a]) have compared AES can-
didates speed, but since the implementations quoted in them are often incomparable (or
based on pure estimations), one cannot make direct conclusions about the efficiency of
these algorithms based on the published papers. Incomparability stems from the differ-
ent implementation assumptions, API’s, hardware (processors) and software (compil-
ers) platforms used by implementers. Even more, some of the numbers there correspond
to the “show-case” (as opposed to practically applicable) implementations; including
the bizarre case that one candidate was claimed to be the fastest on its inventors laptop
under some suitable conditions.

As another example of the unsuitability of some “show-case” implementations, the
fastest implementation of Twofish [SK¥®9b] uses self-modifying code and therefore
cannot be used in a number of applications, while Brian Gladman'’s implementations of

AES candidates [Gla99] use a number of key-specific static variables instead of allo-
cating a register to address them, therefore effectively freeing some registers for other
uses. Especially in the case of the Pentium family, where the number of available reg-
isters is very restricted, such implementations may result in a huge speed up. On the
other hand, Gladman'’s implementations cannot be used several applications, including
multithreaded programs and SMP (symmetric multi-processing) systems.

Most of the security customers need however speed numbers applicable in whatever
product they use in whatever environment in runs (for example, in a Linux kernel-
supported IPSEC implementation, secure login or multithreaded access to encrypted
storage arrays). For users it is necessary to know in what environment the measured
speed numbers were obtained, to be able to calculate the possible efficiency of the
ciphers in their own environments. Additionally, full specification is important for other
implementers to be able to compare their implementations with ours. Hence, apart from
providing “clean” implementations under some reasonable public assumptions, we shall
also next fully specify these assumptions:

— We do not use self-modifying code (“code compilation” [SK@8b]) since it
makes the implementation inapplicable in a number of situations, e.g., in operation-
system kernel and ROM-based applications.

— We additionally decided not to use key-specific static areas since then the imple-
mentation could not be used, e.g., in SMP-capable systems and multithreaded pro-
grams.

— We decided to maximally use the MMX technology since it should not be forbidden
in any reasonable modern environment. (While using self-modifying code and key-
specific static areas is generally considered to be a bad programming practice.)

— We decided to use exactly the same API (specified later in Section 3.1) in all our
implementations.

— A number of well-understood assumptions that 1) improve the speed and can be
easily followed by implementers or 2) are essential to even be able to measure the
speed:

e All codes and data are correctly aligned.

e Input and output texts and codes are preloaded to L1 cache in the possible
extent to reduce the number of cache misses.

e Simplicity of code: we tried to reduce time spent during writing and optimiz-
ing the code. In particular, all our implementations use highly optimized but
round-number independent round macros. (Hence, our results could be slightly
bettered if every round would optimized separately to avoid, e.g., delays in
fetching stage.)

3.1 API

Since a different API can be influence the speed of an implementation severely, we also
decided to fully specify the API used by us to make for the other implementers easier
to compare their implementations to the ours. We felt that this is necessary, since AES
candidate implementations reported in [Lip99] vary greatly in their API's.

void xxKS(char *master, uint32 bitLen, char *eKey);

void xxEnc(char *inBIk, uint32 lenBlk, char *eKey,
char *outBIK);

void xxDec(char *inBlk, uint32 lenBlk, char *eKey,
char *outBIK);

where

xx is algorithm name (e.gRijndael).

xxKS is key scheduling subroutine.

xXEnc is encryption subroutine that encrygenBIk blocks of plaintext starting from the
addressnBlk to the ciphertext locatiooutBlk , by using extended kegKey, in ECB
block cipher mode.

xxDec is decryption subroutine with the same input conventionsx&sc .

uint32 is the type of32-bit unsigned integers (in the case of Pentium I, equairtsigned
long in the case of most compilers).

master is pointer to the master key bits.

bitLen s the bit length of a master key.

eKey is pointer to subkeys and other initialization data, used later by encryption and decryption.

inBIk is pointer to input texts to be encrypted in the casgxiinc and to be decrypted in the
case ofxxDec .

outBlk is pointer to the corresponding output texts.

lenBlk is number of blocks to be encrypted or decrypted.

Fig. 1. Specification of our API.

Note that our API, depicted in Figure 1, is essentially equivalent to the API's used
in most of the commercial applications, specifying only those inputs and outputs to the
algorithms that are really needed by the algorithms. (Names of the subroutines and their
parameters of course do not affect the speed, of course.) Our API was fixed for the key
length of 128-bits due to the feeling that at the time when greater key sizes become
necessary, our implementation platform would already be a history.

Here, the key schedule and decryption subroutines are specified only for complete-
ness. Since in the current paper we are not interested in the optimization of these sub-
routines, we almost do not mention decryption and key schedules hereatfter.

3.2 How to Measure a Number of Cycles

Different time measurement methods may change the speed numbers quite dramati-
cally. As in the case of the API's, we decided to use one, sensible publishedignd
specifiedconvention (specified in Figure 2) for all the implementations. (Note that this
wrapping corresponds almost exactly to the method specified in [Fog00], to which the
reader is referred for a throughout explanation of the method.) The inputs and key of
the cipher are generated randomly before the measurement begins, to prevent “opti-
mization” for specific class of keys. The input varialdaBlk was chosen to be equal

to 8000 so that the input and output texts would not fit in the L1 cache. Als® is

a work area of typaint32 , used in later calculations.

movd mmO, dword ptr [time]; /* warm cache and set MMX stat®/
XOr eax, eax;

cpuid; 1* serialize instructions*/
rdtsc; I* read time-stamp countet/
mov dword ptr [time], eax; /* save counter*/

Xor eax, eax;

cpuid; I* serialize instructions*/

I* xxEnc() or xxDec() */
Xor eax, eax;

cpuid; I* serialize instructions*/
rdtsc; I* read time-stamp countet/
sub dword ptr [time], eax; /* compute the difference/
emms; /* empty MMX state */

Note thattime is a4 bytes work area.

Fig. 2. Time measurement code

/* push all used registers/
cmp dword ptr [lenBIK], O;
jz L1;
align 16;
LO:
dec dword ptr [lenBIK];
jnz LO;
L1:
/¥ pop these registers once moté

Fig. 3. Null function

Note that this method has some overhead, due to both high latency wittice
instructions and also the overhead caused by looping instructiongiikewhich are
not formally part of the cipher itself. (Looping instructions can be seen as a part of
the block cipher mode, however.) We measure this overhead by using the null function
shown in Fig. 3 obtaining a valuaulltime , and then we subtract it from the value of
time obtained by measuring the speeds of different encryption/decryption procedures.
Finally, this result is divided by the number of blocks encrypted. Intuitively, by using
this method we obtain the number of cycles corresponding to unrolled implementation
of the block cipher, or to the implementation where we only care about the time en-
crypting one block takes without adding any extra overhead. (Note that the subtracted
overhead number was equal#06 in the casen = 8000. One could easily add this
number to those presented later to get the number of cydthoverhead.)

Chosen time measurement method is also reasonable in practice: when the value
of lenBlk was chosen to be different, for most of the implementationslyding
the implementation of null cipher), the execution times increased by almost the same
constant. Hence, the null cipher proved experimentally to be well-defined.

Cipher Mbits/s on a 45(Cycles pelBest previous resubpeedup
MHz Pentium Il |block

Null ciphen— 6 — —

RC6 258 Mbits/s 223 243 [Riv98] 8%

Rijndael |243 Mbits/s 237 320 [DR98] 26%

Twofish {204 Mbits/s 282 315 [SKW"99D] 11%

MARS 188 Mbits/s 306 390 [BCD' 98] 22%

Table 1. Performance in clock cycles per block of output of four AES finalists. (Only encryption
considered)

Finally, we did a loop o600 times over the described measurements and then chose
the smallest number for every cipher, since that corresponds most likely to the case
where most of the data and code are in L1 cache and the branch prediction works suc-
cessfully: i.e., to the bulk encryption speed of the cipher itself.

4 Implementation Results

From the five AES finalists, one (Serpent) is regarded as a very conservative design
but at the same time also being clearly slower than the other AES finalists. Rest of the
finalists have comparable timings on most of the modern computer platforms, where
one of the ciphers is the fastest in one platform, and another one in another platform.
Since also on the Pentium Il processor, Serpent seems to be very slow by the published
data, we decided postpone its implementation to the future and concentrate on the fast
ciphers.

Timings, obtained by measuring the speed of implementations by following pre-
viously specified procedures are summarized in Tablé'the numbers in the middle
columns show how many cycles it takes to encrypt t2tebit block by using the cho-
sen cipher with a28-bit key. These results indicate that the chosen four AES finalists
are extremely fast. For comparison, the standard hash algorithm Siké&Hes 512-
bit block in 837 cycles (i.e.,13.1 cycles per byte) and DES and 3DES encryptiebit
block respectively ir840 and928 cycles (resp42.5 and116 cycles per byte) [PRB98],
while RC6 and Rijndael respectively encrypti28-bit block in 223 and 237 cycles
(resp.,13.9 and14.8 cycles per byte). However, note that the cited timings in [PRB98]
were obtained on a plain Pentium and therefore could most probably be improved on
the Pentium Il.

Our results seem to indicate, that the speed difference between different ciphers is
less than expected: as before, RC6 is still the fastest cipher on the Pentium II, but the
difference between it and Rijndael has decreased seriously. Hence we hesitate to say
that RC6 is the fastest cipher. However, based on the cited results, we can classify the
ciphers to two groups: blastingly fast ciphers RC6 and Rijndael and somewhat slower,
but still very fast ciphers Twofish and MARS.

1 \We also started to code the decryption routines, finishing RC6 decryptisnaoycles per
block) and Twofish decryptior2{6 cycles per block).

However, one has to keep in mind that RC6 and MARS have design features that
make them specifically efficient on the Pentium Pro (and its successors), while their
performance seriously degrades on other processors [Lip99/S4]. This is due to
the use of complex instruction82-bit multiplication and data-dependent rotation) that
are cheap on the P6 family (Pentium Pro, Pentium II, Celeron, Xeon and Pentium IlI)
but very expensive on most of the other platforms. Interestingly, also the next generation
Pentium processor (code-named “Willamette”, [IntO0]) has latefcynultiplication
and latency or 4 shifts, as compared to latenéynultiplication and latency shifts on
the P6 family [Int00, Section 4.1.3]. Hence, RC6 and MARS would considerably slow
down on the Willamette, the next generation Pentium family processor. On the other
hand, Rijndael and Twofish are based on simple operations, and run equally well on
all platforms. The speed ratio between Rijndael and Twofish seems be rahmaist
the same on the other platforms [Lip99] (namely, Rijndael béing 25% faster than
Twofish).

Note that the speed up percents in Table 1 correspond to the achieved speed ups
compared to the fastest “clean” implementations (i.e., those not using key-specific static
data or self-modifying code). However, these percents do not always mean that our
implementation techniques were exactly as much better. For example, the best previous
implementation of Rijndael was done for the plain Pentium, but not for the Pentium Pro:
a factor that may have negatively affected its performance. The best previous “clean”
implementation of MARS was written in C, and therefore had also a relatively slow
performance. However, our own C implementation of MARS is clearly faster than the
one given in Table 1. In the case of Rijndael, most of the acceleration Rijndael is due
to the efficient use MMX technology. In general, speed up comes mainly from better
optimization (elaborated tradeoff between processor operating stages) and full usage of
the Pentium Il possibilities (i.e., the MMX technology).

To further clarify how does the Pentium Il architecture impact the speed, Table 2
shows the detailed information of our implementations in encryption mode in the micro-
operation level. Usage of the table is simple. For example, in the intersection point of
“@round” row and “port01” column in TwofishEnc table one would find9. That
means that there ai® poperations in the round function @fvofishEnc which will
be executed on pottor port1.

Interestingly, our implementations of MARS, Rijndael and Twofish all require ap-
proximately the same number pbperations, while RC6 is about two times “better”
in this category. On the other hand, RC6 is also the worst cipher to parallelize: while
in Rijndael, more thar.5 poperations are executed per a cycle, RC6 can only mildly
use the super-scalar parallelism of Pentium Il. More cipher-specific comments will be
given in the next.

5 Cipher-Specific Comments

5.1 MARS

In the case of MARS [BCD98], the speed difference between a carefully optimized
C implementation (using a recent snapshot ofghe compiler) and an optimized as-
sembly language implementation is only abal% on the Pentium Il. The speedup

[[port port 1Jport 01[port 2port 3port 4]total

MARS encryption (.87 pops/cycle)
prewhitening 5 8 13
forward mixing 16 77 32 125
@core (x16) 6 9 3 18
backward mixingg 16 85 32 125
postwhitening 1 8 4 4 4| 21
total 128 1 319 124 4 4{| 572
RC6 encryption 1.47 pops/cycle)
prewhitening 2 7 9
@round (< 20) 8 5 2 15
postwhitening 1 4 5 5 5| 20
total 160 1 106 52 5 5| 329
Rijndael encryption %.54 pops/cycle)
whitening 1 8 6 15
@round (9) 4 1 34, 19 58
last round 4 3 31 20 3 3| 64
total 40, 13} 345 197 3 3|| 601
Twofish encryption 2.11 pops/cycle)
prewhitening 5 8 13
first round 5 19) 10 34
@round (15) 6 190 10 35
postwhitening 2 1 8 4 4 4| 23
total 97 1 317 172 4 4{| 595

Table 2. Number ofp.operations in our implementations

comes mainly from a slightly more efficient allocation of the integer registers and some
(minimal) usage of the MMX instructions in the assembly implementation. However,
the MMX technology is only moderately useful for MARS, since the complex instruc-
tions performed in MARS (i.e., 32-bit multiplication, data-dependent rotation and S-
box lookups) are not available for the MMX registers. Additionally, due to the high
data-dependency there is very limited freedom in meaningfully rescheduling the in-
structions in MARS, which also means that one cannot avoid all the delays on all the
processor operating stages.

Another drawback is that during MARS encryption, some execution ports are con-
siderably more overloaded than others. Namely, moreTR&mof .operations go either
to port0 or 1. The most overloaded is pdif sincel28 poperations go only to this port
— including 16 multiplications and extensively used rotations.

5.2 RC6

From implementers point of view, problems arising when optimizing an RC6 imple-
mentation are similar to those arising when coding MARS in many aspects: both ci-
phers rely on the same complex instructions, have long critical paths and overloaded

port 0. However, since RC6 uses multiplications even more extensively, it is even less
parallelizable. Table 2 shows that our implementation includésport 0 poperations,
which includestO multiplications with latencyt.

RC6 is a very Pentium ll-friendly cipher, and it is very easy to code it even in the
assembly language. It can also be very efficiently implemented in C: the speed differ-
ence between a C implementation and an assembly implementation isl&baufThe
difference is bigger than in the case of MARS simue , the test compiler, performs
very poorly in translating the quadratic formulas of type(2x + 1) to the Pentium Il
assembly language.) It is straightforward to obtain an optimized assembly language
implementation from the C implementation: one does not have many possibilities to
reschedule the code.

5.3 Rijndael

As opposed to MARS and RC6, Rijndael [DR98] is not C-friendly (at leasigeot-
friendly) in the sense that assembly implementation is alddt slower thangcc -
implementation of the same cipher. It is however mainly due to the inefficiency of the
gcc compiler: our implementation of Rijndael makes very heavy use of the MMX
technology, but also of 8-bit instructions provided by Pentium family. Howeyer,
cannot efficiently use either of these.

Rijndael can effectively use the MMX since Rijndael is based only on most simple
imaginable operationsddad , xor), all of which are supported by the MMX technol-
ogy. Additionally, since Rijndael has large internal parallelism (at least four-times, but
partially up tol6-times parallelism!), there is a large number of possibilities to resched-
ule its code. Our implementation was obtained by doing so in a way that all the delays
in the different stages of the Pentium Il operation would be minimized. The final result
is very impressive for the Pentium II: it execute§4 poperations per a cycle.

Not the last factor that makes Rijndael suitable for the Pentium Il is the fact that
almost exactly one third of thgoperations in our implementation of Rijndael go to
port 2, while the remaining@/3 of poperations go to port8 and 1. Due to this and
parallelism we get that during the Rijndael encryptiomoperations could be executed
in parallel aimost all the time. However, this (not to mention other aspects like decoding
and fetching delays) also make8 cycles per round a lower bound for Rijndael and
shows that our result may be very close to the optimal one. To facilitate more efficient
implementations, the Pentium Il should feature three ALUs, two concurrent memory
access ports and also more decoders and retirement units: features that are not cipher-
specific and would improve the speed of most of the applications.

Finally, we measured the timings efround Rijndael for variable: without any
additional fine-tuning: those implementations are unoptimized since they use the same
round macros as thi)-round Rijndael without any additional effort to optimize them
to reduce, say, fetching delays. In particular it turned out8h@iund Rijndael (essen-
tially equivalent to the cipher Square [DKR97] from the implementers point of view)
encrypts a block in93 cycles.192-bit Rijndael (12 rounds) took286 cycles, and56-
bit Rijndael (14 rounds)—333 cycles. Note that sincE2-round Rijndael is very similar
to Crypton [Lim98],286 cycles is also a (hopefully) close approximation for the speed
of latter.

10

5.4 Twofish

Twofish is designed to be well-suited on multiple platforms, including also the Pen-
tium 1l. From the implementers point of view it resembles Rijndael in many aspects, by
using only simple instructions but also some large-scale components of the latter (e.g.,
MDS, to provide diffusion). Due to the use of low-level instructions, Twofish is also
relatively slow in C compared to the assembly (the difference is a35%36).

Main difference for implementers between Rijndael and Twofish is the inclusion
of the Pseudo-Hadamard Transformation that somehow complicates Rijndael’s clear
structure and makes it less parallelizable: while the numbegiopErations in our im-
plementation of Twofish is less than in our implementation of Rijndael, it turned out
to be very difficult to use the MMX technology to optimize Twofish. Hence, Twofish
is only moderately parallelizable, although the parallelism of our implementaioh (
poperations per cycle) is relatively good.

6 Conclusion and Work in Progress

We achieved the fastest implementations of four of the AES finalists on the Pentium Il
processor, obtaining speedkffs . . . 26% compared to the previously known implemen-
tations. Since all implementations were coded by using the same sensible assumptions,
they provide a more adequate efficiency comparison of the AES finalists than the pre-
vious papers. We demonstrated that MMX can be quite efficiently used to speedup
Rijndael, but is only moderately useful for other ciphers. (However, our implemen-
tations depend on the availability of MMX technology to a lesser or greater extent
and in general do not run on the Pentium Pro.) We provided full specification on our
time-measurement conditions to simplify for the future implementers to compare their
implementations to ours.

Our implementations are not the final: we continue optimizing them. Up-to-date
results will be available at the AES efficiency table [Lip99].

References

[ABK98] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A Flexible Block Cipher
With Maximum Assurance. Iithe First Advanced Encryption Standard Candidate
ConferencgVentura, California, USA, 20—-22 August 1998.

[BCDT98] Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gennaro,
Shai Halevi, Charanjit Jutla, Stephen M. Matyas Jr., Luke O’Connor, Moham-
mad Peyravian, David Safford, and Nevenko Zunic. @MARS — A Candi-
date Cipher for AES. Original paper and a tweak to it are available from
http://www.research.ibm.com/security/mars.html , June 1998.

[DKR97] Joan Daemen, Lars Knudsen, and Vincent Rijmen. The Block Cipher Square. In
Eli Biham, editor,Fast Software Encryption '9#&olume 1267 ofl_ecture Notes in
Computer Scienc@ages 149-165, Haifa, Israel, January 1997. Springer-Verlag.

[DR98] Joan Daemen and Vincent Rijmen. The Block Cipher Rijndaélhird Smart Card
Research and Advanced Applications Conference Proceedifg§8. To appear.

11

[FIP77]

[Fog0Q]

[Gla99]

[Int99]
[INt00]

[Limo8]

[Lip98]

[Lip99]

[LM9O]

[LMMO94]

[PRBYS]

[Rivo8]

[RRSY98]

FIPS. Data Encryption Standard. Technical report, U.S. Department of Com-
merce/National Bureau of Standards, National Technical Information Service,
Springfield, Virginia, 1977. FIPS 46.

Agner Fog. How to Optimize for the Pentium Microprocessors. Available from
http://www.agner.com/assem/ , 11 March 2000.

Brian Gladman. AES algorithm efficiency. Unpublished. Information available
from http://www.btinternet.com/"brian.gladman/ cryptogra-

phy _technology/ , January 1999.

Intel. Intel Architecture Optimization. Reference Manu&999. Order Number
245127-001.

Intel. Willamette Processor Software Developer's GuiBebruary 2000. Order
Number 245355-001.

Chae Hoon Lim. Specification and Analysis of CRYPTON Version 1.0.
Unpublished. Available from http://crypt.future.co.kr/"chlim/
pub/cryptonv10.ps , 22 December 1998.

Helger Lipmaa. IDEA: A cipher for multimedia architectures? In Stafford Tavares
and Henk Meijer, editorsSelected Areas in Cryptography '9&lume 1556 of.ec-

ture Notes in Computer Sciengeages 248—-263, Kingston, Canada, 17-18 August
1998. Springer-Verlag.

Helger Lipmaa. AES candidates: A survey of implementations. An on-line table. In-
formation available fromhttp://home.cyber.ee/helger/aes/ , January
1999.

Xuejia Lai and James Massey. A proposal for a new block encryption standard. In
I. B. Damgard, editor,Advances in Cryptology — EUROCRYPT,'@lume 473

of Lecture Notes in Computer Scienpages 389-404. Springer-Verlag, 1991, 21—
24 May 1990.

Xuejia Lai, James L. Massey, and Sean Murphy. Markov ciphers and differential
cryptanalysis. In D. W. Davies, editohdvances on Cryptology — EUROCRYPT
'91, volume 547 ofLecture Notes in Computer Sciengeges 17-38, Brighton,
UK, April 1994. Springer-Verlag.

Bart Preneel, Vincent Rijmen, and Antoon Bosselaers. Recent developments in the
design of conventional algorithms. In B. Preneel, R. Govaerts, and J. Vandewalle,
editors,Computer Security and Industrial Cryptography, State of the Art and Evolu-
tion, volume 1528 of_ecture Notes in Computer Scienpages 90-115. Springer-
Verlag, 1998.

Ronald L. Rivest. Futher Notes on RC6. Unpublished. Available from
http://theory.lcs.mit.edu/rivest/rc6-notes.txt , 20 June
1998.

Ronald L. Rivest, Matt J. B. Robshaw, R. Sidney, and Y. L. Yin. The RC6 Block Ci-
pher. Available fromhttp://theory.lcs.mit.edu/ rivest/rc6.ps ,
June 1998.

[SKWT99a] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, and Chris Hall. Per-

formance comparison of the AES submissions. Unpublished. Information available
from http://www.counterpane.com/ , January 1999.

[SKW'99b] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels

Ferguson.The Twofish Encryption Algorithm: A 128-Bit Block Ciphdohn Wiley
& Sons, April 1999. ISBN: 0471353817.

12

A Pentium Il for Cipher Designers and Implementers

A.l MMX Technology

The Pentium Il has integer (including stack pointer) arsdnew MMX registers; the
latter were not present in the Pentium Pro. While there is a great number of opera-
tions available on the integer registers, MMX registers are much more “RISCy”: only a
few instructions affect them, including move, Boolean operatibéait arithmetic and
shifts. Available set of instructions does not include several operations used in the mod-
ern block cipher design, including rotation a3ibit multiplication. On the other hand,

the MMX technology provide$4-bit versions of Boolean operations and data moves
(i.e., the simplest possible operations), and also paraley addition and multiplica-

tion of 16-bit data.16-bit multiplication is currently used in a very few ciphers, but as
shown in [Lip98], ciphers that base their security on extensive ué-bft multiplica-

tion can be speed up considerably if using the MMX technology.

Despite of MMX's attractiveness, at the current state of the affairs many C compilers
(forexamplegcc , the standard compiler for Linux machines) do not yet produce MMX
code. Hence, for the Pentium Il the assembly implementations are potentially more
efficient than C-language implementations. Partially by this reason, many designers
and implementers of AES candidates seem not to know about MMX at alll.

A.2 Processor stages.

The Pentium Il processor (as other processors in the P6 family) operates in several
stages. At first the instructions are fetched from the main memory and then broken
down (decoded) intgoperations (simple instructions consist of only qraperation,

while complex instruction have mogeperations). Thereafter, theoperations go via

a short queue to the register allocation table that allows register renaming. After that,
instructions go to reorder buffer that enables out-of-order execution. There it stays un-
til the operands it needs are available. Ready-for-execuytigrerations are sent to the
execution units, and thereafter retired [Int99,Fog00]. During the optimization one has
to count on all different stages of processor operation to find a good tradeoff between
the delays introduced in them. The technicalities presented hereafter could be most in-
teresting for the implementers, but also for the cipher designers who want to create
ciphers optimized for the Pentium Il. The most important lesson from the next is that
fixing any processor stages (e.g., decoding), suitable reordering of the instructions can
considerably reduce the delays at this stage. However, the same reordering usually intro-
duces additional delays in some other stages and therefore, code reordering is always
a complicated tradeoff. To achieve really fast implementations, a cipher should have
great internal parallelism that provides many different instruction reordering possibil-
ities, from what the best could be found after possibly exhaustive search. Of course,
one could design a cipher that would have only one possible order of instructions, op-
timized specifically for Pentium Il. However, such cipher could slow down severely

if even slightest modifications would be introduced to the processor. Moreover, paral-
lelism is necessary anyways, since already in the near future a processor could have
dozens simultaneously working executing units.

13

Note that our survey is far from being complete, we refer an interested reader to
[Int99,Fog00]. However, during finishing our implementations we found that also the
official Pentium family optimization manual published by Intel [Int99] is far from being
complete. We encountered many problems that could not have been foreseen by using
only the official manuals. Often more accurate (although also not complete) information
about the Pentium Il was found in [Fog00]. In several places of our implementations
we performed partial exhaustive search to optimally schedule the instructions. A lot of
experience and luck is necessary in optimizing for Pentium 1l if one desires to avoid
exhaustive search himself.

In-Order Decoding. Up to 3 instructions can be decoded goperations at time, but
only the first decoder can handle instructions with more than.@peration. It is rec-
ommended to order the instructions in thé-1 sequence, which means that only ev-
ery third instruction could combine in itself of more than qmeperation [Int99]. By

this reason, algorithms using only “simple operations” can be potentially implemented
faster than those consisting of “complex instructions”. However, in some circuimstances
it would also beneficial to have at least some complex instructions. Namely, if the code
is properly scheduled in a way that exactly (almost) every third instruction has more
than oneuoperation, the decoder will feed the out-of-order execution pool with pace
more tham poperations per cycle. Now, if in some later stage less thaoperations

per cycle are fed to the execution unit (say due to the delays in fetching), this unit will
not idle waiting for the next instructions from the decoder.

Instruction In-Order Fetching. The Pentium Il hag6-byte internaifetch bufferawith

the peculiarity that a new buffer is forced to start at beginning of an instruction. The first
instruction of the ifetch buffer will be always decoded by decddgewren if the previous
instruction was decoded by the same decoder and hence, other decoders would stay
idle. Hence, code reordering and possible use of semantically identical instructions (in
general, but not alwayshorterinstructions: for examplenov eax,[ebx+0] with

mov eax,[ebx]) with differentlength could reduce the number of delays introduced

in this stage.

Register In-Order Renaming. Pentium Il hasi0 hardware registers. The software
registers are renamed to hardware registers after a write to (or read from) the software
register. After a register has not been used for a while, it automatically retires and the
next time the same register is used, a new renaming is performed. It is important to know
thatonly two register renamings can be done during one machine clyclearticular

this means that generally it is beneficial to gather all instructions operating on some
fixed data chunk together (i.e., to reorder the code in a suitable way). However, it is
extremely difficult to detect and remove delays introduced by this stage, and therefore
this stage may really beconttgebottleneck in optimization: subtle modification of code
may introduce long delays in this stage. We refer to [Fog00] for more information.

Out-of-Order Execution. Pentium Il hass execution ports (port O, port 1, ..., port
4) that can execute instructions out-of-order. Every port has some specific meaning.

14

PortsO and1 are ALUs (they can perform arithmetic on operands in registers),2port
performs memory loads. Every memory write counts as faperations, one in port

3 (address calculation) and another one in gofimemory write). Up ta3 ports can
execute an instruction in parallel. There are a number of arithmetic instructions that
can only run in porD (most importantly, multiplication, rotation and integer register
shifts — instructions that are widely used by some AES finalists), while some other
instructions (most importantly, MMX register shifts) can only run in plorTo obtain

a throughput near t8 poperations per cycle, the instructions should be distributed so
that no more thag/3 of them are arithmetic, no more thaj3 are memory loads and

no more thanl/3 are memory writes: a condition that is very difficult to fulfill in a
practical application.

In-Order Retirement After execution.operations will retire in-order. During retire-
ment, hardware registers will be written back to software registers anebiberations

leave the instruction pool. Since this is done in-order, several delays can occur, e.g., if
speculative out-of-order execution of some earlier long latency instruction is not fin-
ished at the moment of retirement.

15

